update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,104 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
model-index:
|
6 |
+
- name: xtreme_s_xlsr_300m_fleurs_asr_western_european_nomask
|
7 |
+
results: []
|
8 |
+
---
|
9 |
+
|
10 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
11 |
+
should probably proofread and complete it, then remove this comment. -->
|
12 |
+
|
13 |
+
# xtreme_s_xlsr_300m_fleurs_asr_western_european_nomask
|
14 |
+
|
15 |
+
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the None dataset.
|
16 |
+
It achieves the following results on the evaluation set:
|
17 |
+
- Loss: 1.2572
|
18 |
+
- Wer: 0.6278
|
19 |
+
- Cer: 0.2394
|
20 |
+
|
21 |
+
## Model description
|
22 |
+
|
23 |
+
More information needed
|
24 |
+
|
25 |
+
## Intended uses & limitations
|
26 |
+
|
27 |
+
More information needed
|
28 |
+
|
29 |
+
## Training and evaluation data
|
30 |
+
|
31 |
+
More information needed
|
32 |
+
|
33 |
+
## Training procedure
|
34 |
+
|
35 |
+
### Training hyperparameters
|
36 |
+
|
37 |
+
The following hyperparameters were used during training:
|
38 |
+
- learning_rate: 0.0003
|
39 |
+
- train_batch_size: 8
|
40 |
+
- eval_batch_size: 1
|
41 |
+
- seed: 42
|
42 |
+
- distributed_type: multi-GPU
|
43 |
+
- num_devices: 8
|
44 |
+
- total_train_batch_size: 64
|
45 |
+
- total_eval_batch_size: 8
|
46 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
47 |
+
- lr_scheduler_type: linear
|
48 |
+
- lr_scheduler_warmup_steps: 1000
|
49 |
+
- num_epochs: 20.0
|
50 |
+
- mixed_precision_training: Native AMP
|
51 |
+
|
52 |
+
### Training results
|
53 |
+
|
54 |
+
| Training Loss | Epoch | Step | Validation Loss | Wer | Cer |
|
55 |
+
|:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|
|
56 |
+
| 3.1411 | 0.49 | 500 | 3.1673 | 1.0 | 1.0 |
|
57 |
+
| 0.6397 | 0.97 | 1000 | 0.9039 | 0.7171 | 0.2862 |
|
58 |
+
| 0.4033 | 1.46 | 1500 | 0.8914 | 0.6862 | 0.2763 |
|
59 |
+
| 0.3473 | 1.94 | 2000 | 0.8017 | 0.6505 | 0.2536 |
|
60 |
+
| 0.3143 | 2.43 | 2500 | 0.8568 | 0.6566 | 0.2627 |
|
61 |
+
| 0.3004 | 2.91 | 3000 | 0.8898 | 0.6640 | 0.2686 |
|
62 |
+
| 0.282 | 3.4 | 3500 | 0.8489 | 0.6637 | 0.2571 |
|
63 |
+
| 0.2489 | 3.88 | 4000 | 0.8955 | 0.6744 | 0.2691 |
|
64 |
+
| 0.1706 | 4.37 | 4500 | 0.9190 | 0.6788 | 0.2688 |
|
65 |
+
| 0.3336 | 4.85 | 5000 | 0.8915 | 0.6594 | 0.2572 |
|
66 |
+
| 0.1426 | 5.34 | 5500 | 0.9501 | 0.6784 | 0.2686 |
|
67 |
+
| 0.2301 | 5.83 | 6000 | 1.0217 | 0.6719 | 0.2735 |
|
68 |
+
| 0.1325 | 6.31 | 6500 | 0.9578 | 0.6691 | 0.2655 |
|
69 |
+
| 0.1145 | 6.8 | 7000 | 0.9129 | 0.6680 | 0.2593 |
|
70 |
+
| 0.1202 | 7.28 | 7500 | 0.9646 | 0.6749 | 0.2619 |
|
71 |
+
| 0.143 | 7.77 | 8000 | 0.9200 | 0.6554 | 0.2554 |
|
72 |
+
| 0.1012 | 8.25 | 8500 | 0.9553 | 0.6787 | 0.2628 |
|
73 |
+
| 0.1018 | 8.74 | 9000 | 0.9455 | 0.6445 | 0.2511 |
|
74 |
+
| 0.1148 | 9.22 | 9500 | 1.0206 | 0.6725 | 0.2629 |
|
75 |
+
| 0.0794 | 9.71 | 10000 | 0.9305 | 0.6547 | 0.2526 |
|
76 |
+
| 0.2891 | 10.19 | 10500 | 1.0424 | 0.6709 | 0.2570 |
|
77 |
+
| 0.1665 | 10.68 | 11000 | 0.9760 | 0.6596 | 0.2507 |
|
78 |
+
| 0.1956 | 11.17 | 11500 | 0.9549 | 0.6340 | 0.2440 |
|
79 |
+
| 0.0828 | 11.65 | 12000 | 0.9598 | 0.6403 | 0.2460 |
|
80 |
+
| 0.059 | 12.14 | 12500 | 0.9972 | 0.6574 | 0.2531 |
|
81 |
+
| 0.0505 | 12.62 | 13000 | 0.9836 | 0.6534 | 0.2525 |
|
82 |
+
| 0.0336 | 13.11 | 13500 | 1.0619 | 0.6564 | 0.2519 |
|
83 |
+
| 0.0435 | 13.59 | 14000 | 1.0844 | 0.6480 | 0.2543 |
|
84 |
+
| 0.0216 | 14.08 | 14500 | 1.1084 | 0.6512 | 0.2521 |
|
85 |
+
| 0.0265 | 14.56 | 15000 | 1.1152 | 0.6607 | 0.2563 |
|
86 |
+
| 0.0975 | 15.05 | 15500 | 1.1060 | 0.6456 | 0.2471 |
|
87 |
+
| 0.1396 | 15.53 | 16000 | 1.1100 | 0.6337 | 0.2418 |
|
88 |
+
| 0.0701 | 16.02 | 16500 | 1.1731 | 0.6309 | 0.2415 |
|
89 |
+
| 0.1171 | 16.5 | 17000 | 1.1302 | 0.6315 | 0.2396 |
|
90 |
+
| 0.0778 | 16.99 | 17500 | 1.1485 | 0.6379 | 0.2447 |
|
91 |
+
| 0.0642 | 17.48 | 18000 | 1.2009 | 0.6400 | 0.2464 |
|
92 |
+
| 0.0322 | 17.96 | 18500 | 1.2028 | 0.6357 | 0.2425 |
|
93 |
+
| 0.031 | 18.45 | 19000 | 1.2381 | 0.6285 | 0.2416 |
|
94 |
+
| 0.0579 | 18.93 | 19500 | 1.2299 | 0.6265 | 0.2409 |
|
95 |
+
| 0.0628 | 19.42 | 20000 | 1.2582 | 0.6277 | 0.2395 |
|
96 |
+
| 0.074 | 19.9 | 20500 | 1.2572 | 0.6278 | 0.2394 |
|
97 |
+
|
98 |
+
|
99 |
+
### Framework versions
|
100 |
+
|
101 |
+
- Transformers 4.18.0.dev0
|
102 |
+
- Pytorch 1.10.1+cu111
|
103 |
+
- Datasets 1.18.4.dev0
|
104 |
+
- Tokenizers 0.11.6
|