File size: 2,748 Bytes
03190f3 3a97e0e 03190f3 3a97e0e de071fe 03190f3 de071fe 03190f3 3a97e0e 03190f3 3a97e0e 03190f3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- xtreme_s
metrics:
- accuracy
model-index:
- name: xtreme_s_xlsr_300m_fleurs_langid_truncated
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# xtreme_s_xlsr_300m_fleurs_langid_truncated
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the xtreme_s dataset.
It achieves the following results on the evaluation set:
- Accuracy: 0.7236
- Loss: 1.3514
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 8
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- total_train_batch_size: 64
- total_eval_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 2000
- num_epochs: 5.0
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Accuracy | Validation Loss |
|:-------------:|:-----:|:-----:|:--------:|:---------------:|
| 0.5296 | 0.26 | 1000 | 0.4016 | 2.6633 |
| 0.4252 | 0.52 | 2000 | 0.5751 | 1.8582 |
| 0.2989 | 0.78 | 3000 | 0.6332 | 1.6780 |
| 0.3563 | 1.04 | 4000 | 0.6799 | 1.4479 |
| 0.1617 | 1.3 | 5000 | 0.6679 | 1.5066 |
| 0.1409 | 1.56 | 6000 | 0.6992 | 1.4082 |
| 0.01 | 1.82 | 7000 | 0.7071 | 1.2448 |
| 0.0018 | 2.08 | 8000 | 0.7148 | 1.1996 |
| 0.0014 | 2.34 | 9000 | 0.6410 | 1.6505 |
| 0.0188 | 2.6 | 10000 | 0.6840 | 1.4050 |
| 0.0007 | 2.86 | 11000 | 0.6621 | 1.5831 |
| 0.1038 | 3.12 | 12000 | 0.6829 | 1.5441 |
| 0.0003 | 3.38 | 13000 | 0.6900 | 1.3483 |
| 0.0004 | 3.64 | 14000 | 0.6414 | 1.7070 |
| 0.0003 | 3.9 | 15000 | 0.7075 | 1.3198 |
| 0.0002 | 4.16 | 16000 | 0.7105 | 1.3118 |
| 0.0001 | 4.42 | 17000 | 0.7029 | 1.4099 |
| 0.0 | 4.68 | 18000 | 0.7180 | 1.3658 |
| 0.0001 | 4.93 | 19000 | 0.7236 | 1.3514 |
### Framework versions
- Transformers 4.18.0.dev0
- Pytorch 1.10.1+cu111
- Datasets 1.18.4.dev0
- Tokenizers 0.11.6
|