File size: 3,217 Bytes
89032ef
5eafcaf
 
89032ef
 
5eafcaf
 
89032ef
 
a04305e
79c454e
89032ef
 
 
 
a04305e
89032ef
 
 
 
 
 
a04305e
89032ef
5eafcaf
89032ef
fb6dced
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
89032ef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
---
language:
- all
license: apache-2.0
tags:
- minds14
- google/xtreme_s
- generated_from_trainer
datasets:
- google/xtreme_s
- PolyAI/minds14
metrics:
- f1
- accuracy
model-index:
- name: xtreme_s_xlsr_300m_minds14
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# xtreme_s_xlsr_300m_minds14

This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the GOOGLE/XTREME_S - MINDS14.ALL dataset.
It achieves the following results on the evaluation set:
- Accuracy: 0.9033
- Accuracy Cs-cz: 0.9164
- Accuracy De-de: 0.9477
- Accuracy En-au: 0.9235
- Accuracy En-gb: 0.9324
- Accuracy En-us: 0.9326
- Accuracy Es-es: 0.9177
- Accuracy Fr-fr: 0.9444
- Accuracy It-it: 0.9167
- Accuracy Ko-kr: 0.8649
- Accuracy Nl-nl: 0.9450
- Accuracy Pl-pl: 0.9146
- Accuracy Pt-pt: 0.8940
- Accuracy Ru-ru: 0.8667
- Accuracy Zh-cn: 0.7291
- F1: 0.9015
- F1 Cs-cz: 0.9154
- F1 De-de: 0.9467
- F1 En-au: 0.9199
- F1 En-gb: 0.9334
- F1 En-us: 0.9308
- F1 Es-es: 0.9158
- F1 Fr-fr: 0.9436
- F1 It-it: 0.9135
- F1 Ko-kr: 0.8642
- F1 Nl-nl: 0.9440
- F1 Pl-pl: 0.9159
- F1 Pt-pt: 0.8883
- F1 Ru-ru: 0.8646
- F1 Zh-cn: 0.7249
- Loss: 0.4119
- Loss Cs-cz: 0.3790
- Loss De-de: 0.2649
- Loss En-au: 0.3459
- Loss En-gb: 0.2853
- Loss En-us: 0.2203
- Loss Es-es: 0.2731
- Loss Fr-fr: 0.1909
- Loss It-it: 0.3520
- Loss Ko-kr: 0.5431
- Loss Nl-nl: 0.2515
- Loss Pl-pl: 0.4113
- Loss Pt-pt: 0.4798
- Loss Ru-ru: 0.6470
- Loss Zh-cn: 1.1216
- Predict Samples: 4086

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 2
- total_train_batch_size: 64
- total_eval_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1500
- num_epochs: 50.0
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | F1     | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:------:|:--------:|
| 2.6739        | 5.41  | 200  | 2.5687          | 0.0430 | 0.1190   |
| 1.4953        | 10.81 | 400  | 1.6052          | 0.5550 | 0.5692   |
| 0.6177        | 16.22 | 600  | 0.7927          | 0.8052 | 0.8011   |
| 0.3609        | 21.62 | 800  | 0.5679          | 0.8609 | 0.8609   |
| 0.4972        | 27.03 | 1000 | 0.5944          | 0.8509 | 0.8523   |
| 0.1799        | 32.43 | 1200 | 0.6194          | 0.8623 | 0.8621   |
| 0.1308        | 37.84 | 1400 | 0.5956          | 0.8569 | 0.8548   |
| 0.2298        | 43.24 | 1600 | 0.5201          | 0.8732 | 0.8743   |
| 0.0052        | 48.65 | 1800 | 0.3826          | 0.9106 | 0.9103   |


### Framework versions

- Transformers 4.18.0.dev0
- Pytorch 1.10.2+cu113
- Datasets 2.0.1.dev0
- Tokenizers 0.11.6