antoooooine commited on
Commit
f52ed73
1 Parent(s): c9bbacc

Initial commit

Browse files
.gitattributes CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
35
+ replay.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - AntBulletEnv-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: AntBulletEnv-v0
16
+ type: AntBulletEnv-v0
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 1680.68 +/- 138.87
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **AntBulletEnv-v0**
25
+ This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-AntBulletEnv-v0.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:185f017c09fc306dc1e42877de41c6e01e1930fc5a650fa19dea674b6855fc28
3
+ size 129335
a2c-AntBulletEnv-v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-AntBulletEnv-v0/data ADDED
@@ -0,0 +1,106 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7fc076e375b0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fc076e37640>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fc076e376d0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fc076e37760>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7fc076e377f0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7fc076e37880>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fc076e37910>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fc076e379a0>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7fc076e37a30>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fc076e37ac0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fc076e37b50>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fc076e37be0>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7fc076e328c0>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {
24
+ ":type:": "<class 'dict'>",
25
+ ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
26
+ "log_std_init": -2,
27
+ "ortho_init": false,
28
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
29
+ "optimizer_kwargs": {
30
+ "alpha": 0.99,
31
+ "eps": 1e-05,
32
+ "weight_decay": 0
33
+ }
34
+ },
35
+ "observation_space": {
36
+ ":type:": "<class 'gym.spaces.box.Box'>",
37
+ ":serialized:": "gAWVbQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgLSxyFlIwBQ5R0lFKUjARoaWdolGgTKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLHIWUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCJLHIWUaBZ0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
38
+ "dtype": "float32",
39
+ "_shape": [
40
+ 28
41
+ ],
42
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
43
+ "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
44
+ "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
45
+ "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
46
+ "_np_random": null
47
+ },
48
+ "action_space": {
49
+ ":type:": "<class 'gym.spaces.box.Box'>",
50
+ ":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAEBAQEBAQEBlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu",
51
+ "dtype": "float32",
52
+ "_shape": [
53
+ 8
54
+ ],
55
+ "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
56
+ "high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
57
+ "bounded_below": "[ True True True True True True True True]",
58
+ "bounded_above": "[ True True True True True True True True]",
59
+ "_np_random": null
60
+ },
61
+ "n_envs": 4,
62
+ "num_timesteps": 2000000,
63
+ "_total_timesteps": 2000000.0,
64
+ "_num_timesteps_at_start": 0,
65
+ "seed": null,
66
+ "action_noise": null,
67
+ "start_time": 1675532596059218480,
68
+ "learning_rate": 0.00096,
69
+ "tensorboard_log": null,
70
+ "lr_schedule": {
71
+ ":type:": "<class 'function'>",
72
+ ":serialized:": "gAWV2QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMUy9ob21lL2FudG9pbmUvLmxvY2FsL2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgkMCBAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxTL2hvbWUvYW50b2luZS8ubG9jYWwvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP091EE1VHWmFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
73
+ },
74
+ "_last_obs": {
75
+ ":type:": "<class 'numpy.ndarray'>",
76
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAO/vMj99sSE/it3lPvRyRT+wKvq+3OCBP2G8Ez5bXZe/REV5P1J/oL5ozkG/hQcTPsJfbb7wbow+X+t7PsLSTT/+V64/rdggv4Sntr5vKFW+7Monvy0AL8AMN8s/nXgvPhzvn7/HjAs/1On3Ppslej8axpQ/kxd3viFnHD9ICmA+5iArv6allL8oJWy+63TyP+wlcj9zHEq969lavlLzQUBfaJA/rfkkwDnvd8DIHC8/PX1Yvx6uhcC8Pk/A+NO4P+WGgL8dtag+0eHHPnJdCsAc75+/x4wLP9ksBMC6/oK/mgLOPmfJXj8dd4k+abf1Px8SjD6vXqw/uWAUv1srmD2d1nE/29cZvS+6dr4MnhU/YO8BP6KsX7+pwak+4stuPhCoLT+DMdC/dF+FvxQkIj+fCka/FM+Zv7k/Pj9cdqO/buJMP8eMCz/U6fc+uv6Cvxu8mj2wT6Q/3cdjviVafj9tC9A/CxshvSdBuD4FD62+cFRxPybzabx8MxC/RKODPyUOcD80u8Y+jdu+PpxCmDtS8ZE/JUMTP18SAj7zqwy/YbKGvrXKjT+DrsI+8hpLvhzvn7/iz+q/1On3Ppslej+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
77
+ },
78
+ "_last_episode_starts": {
79
+ ":type:": "<class 'numpy.ndarray'>",
80
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
81
+ },
82
+ "_last_original_obs": {
83
+ ":type:": "<class 'numpy.ndarray'>",
84
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAAMHS63AACAPwAAAAAAAAAAAAAAAAAAAAAAAACACCANPgAAAABE/t2/AAAAANTlH70AAAAA1q7qPwAAAADidA2+AAAAAAqC9T8AAAAAMmwCPgAAAABGL+m/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA5tG8NAAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgCUKuj0AAAAAA+j2vwAAAAC5uXo9AAAAAE4m6T8AAAAANEfmvAAAAACMHfI/AAAAAOejkr0AAAAAslfdvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIKxebYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIA0LAs+AAAAAKUG678AAAAA3k3FPAAAAABomu0/AAAAALEfUj0AAAAAv4bwPwAAAABvu849AAAAALeV378AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC1sqK2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAxQfmPAAAAABQYeW/AAAAAC15Az0AAAAAvGbvPwAAAAAs68S9AAAAAEMc2j8AAAAAiujdPQAAAABcueq/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
85
+ },
86
+ "_episode_num": 0,
87
+ "use_sde": true,
88
+ "sde_sample_freq": -1,
89
+ "_current_progress_remaining": 0.0,
90
+ "ep_info_buffer": {
91
+ ":type:": "<class 'collections.deque'>",
92
+ ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJt1LRPXTVmMAWyUTegDjAF0lEdApAHHTiKiwnV9lChoBkdAm1yh6rvLHWgHTegDaAhHQKQDQbMHKOl1fZQoaAZHQJrBzag2609oB03oA2gIR0CkBsOX3QD3dX2UKGgGR0CbXwaqjrRjaAdN6ANoCEdApAkNnRLK3nV9lChoBkdAdXpNVzZHu2gHTegDaAhHQKQLg5FPSD11fZQoaAZHQJcB9DVpblloB03oA2gIR0CkDQhTwUg0dX2UKGgGR0CZPn6cy31BaAdN6ANoCEdApBDGAoXsPnV9lChoBkdAlv0PrKNhmWgHTegDaAhHQKQTErXlKbt1fZQoaAZHQJiZWi9IwudoB03oA2gIR0CkFXq+i8FqdX2UKGgGR0CZK22IwdsBaAdN6ANoCEdApBbiAe7tiXV9lChoBkdAlWrMkhRqGmgHTegDaAhHQKQaa1O0svt1fZQoaAZHQJdjp01ZTydoB03oA2gIR0CkHJrRKHwgdX2UKGgGR0CWsN8Hv+fiaAdN6ANoCEdApB7RCQcPv3V9lChoBkdAlYExtYSxq2gHTegDaAhHQKQgEi1y/9J1fZQoaAZHQJM+LRD1GspoB03oA2gIR0CkI5v91loUdX2UKGgGR0CVvYAxi5NHaAdN6ANoCEdApCVR2MbWE3V9lChoBkdAl7Y0+xGDtmgHTegDaAhHQKQnscI7eVN1fZQoaAZHQJkd79bX6IpoB03oA2gIR0CkKP/ChvitdX2UKGgGR0CYPfTy8SPEaAdN6ANoCEdApCyRqREF4nV9lChoBkdAle4mJN0vG2gHTegDaAhHQKQueKv3ai91fZQoaAZHQJVhoIrvsqtoB03oA2gIR0CkMRYdZJTVdX2UKGgGR0CUX2u1ndweaAdN6ANoCEdApDJgV6/qPnV9lChoBkdAlIO68lHBlGgHTegDaAhHQKQ13BHCoCN1fZQoaAZHQJNjq5d4VypoB03oA2gIR0CkN7ZrHlwMdX2UKGgGR0CS+o/2TPjXaAdN6ANoCEdApDokTFl05nV9lChoBkdAl/o62F36h2gHTegDaAhHQKQ7xaLXL/11fZQoaAZHQJL8aCI1tO5oB03oA2gIR0CkP5HLzPKMdX2UKGgGR0CWe8dkJ8fFaAdN6ANoCEdApEF7tb9qDnV9lChoBkdAmxD+5J9RaWgHTegDaAhHQKRDxagVXV91fZQoaAZHQJkvQldC3PRoB03oA2gIR0CkRUW9L6DXdX2UKGgGR0CWhiIvJzT4aAdN6ANoCEdApEkUSmIj4nV9lChoBkdAkuM1HJ9y92gHTegDaAhHQKRLHvE0iyJ1fZQoaAZHQJjPSOyVv/BoB03oA2gIR0CkTblZPl+3dX2UKGgGR0CUVg0JWvKVaAdN6ANoCEdApE8jDn/1hHV9lChoBkdAle4PlEJBxGgHTegDaAhHQKRSYScslLR1fZQoaAZHQJnUfyqdYnxoB03oA2gIR0CkVGvl+3H8dX2UKGgGR0CZHyK2rn1WaAdN6ANoCEdApFbVpfx+a3V9lChoBkdAm7O2yon8bmgHTegDaAhHQKRYUJYT0xx1fZQoaAZHQJjIlhhH9WJoB03oA2gIR0CkW5mGEf1ZdX2UKGgGR0CX/3rYXfqHaAdN6ANoCEdApF2sWAPNFHV9lChoBkdAmTcfiYLLIWgHTegDaAhHQKRf0ao/A0t1fZQoaAZHQJlfX7gsK9hoB03oA2gIR0CkYP0G/vfCdX2UKGgGR0CZPZ/u9eyBaAdN6ANoCEdApGSSBiCrcXV9lChoBkdAmBeFoHs1K2gHTegDaAhHQKRmmtRvWH11fZQoaAZHQJWWp/smfGxoB03oA2gIR0CkaPbXHzYmdX2UKGgGR0CVR/4QSSNgaAdN6ANoCEdApGo12ki2UnV9lChoBkdAlJu/fj0cwWgHTegDaAhHQKRt7SAH3UR1fZQoaAZHQJiu1Bu4wytoB03oA2gIR0Ckb9+CK77LdX2UKGgGR0CTWbiDdxhlaAdN6ANoCEdApHJW1pj+aXV9lChoBkdAk+YO8scyWWgHTegDaAhHQKRzlON5t3x1fZQoaAZHQJRLyuU2UB5oB03oA2gIR0CkdzcGs3hodX2UKGgGR0CLrjz+3pfQaAdN6ANoCEdApHkDDEWIoHV9lChoBkdAkuT98NQTEmgHTegDaAhHQKR7g02tMf11fZQoaAZHQI89G16Vt41oB03oA2gIR0CkfQKsEJSjdX2UKGgGR0CWrbacI7eVaAdN6ANoCEdApICYCZF5OnV9lChoBkdAmbPUiyIHkmgHTegDaAhHQKSCvx6v7nB1fZQoaAZHQJdN8AsCkoFoB03oA2gIR0CkhV9NnGsFdX2UKGgGR0CVJiJ04iosaAdN6ANoCEdApIbHYWcjJXV9lChoBkdAl0osqrilzmgHTegDaAhHQKSKeuMdcSp1fZQoaAZHQJlhQClrM1VoB03oA2gIR0CkjHktEofCdX2UKGgGR0CYKmEbo8p1aAdN6ANoCEdApI8HQv6CUXV9lChoBkdAk9p4UN8VpWgHTegDaAhHQKSQTkrf+CN1fZQoaAZHQJVl51SwW31oB03oA2gIR0Ckk+nNxEORdX2UKGgGR0CcTN2g3974aAdN6ANoCEdApJXgA2hqTXV9lChoBkdAmFE+6/ZdwGgHTegDaAhHQKSYJbTtsvZ1fZQoaAZHQJhstALRa5hoB03oA2gIR0CkmaPTgEU1dX2UKGgGR0CYqcb/ffoBaAdN6ANoCEdApJ0jw+dK/XV9lChoBkdAmkrgS39aU2gHTegDaAhHQKSfXwOOKfp1fZQoaAZHQJeKLTx5LRNoB03oA2gIR0CkofszVMEidX2UKGgGR0CYnDYfW+XaaAdN6ANoCEdApKN0iB5HE3V9lChoBkdAmSnK5oXbd2gHTegDaAhHQKSnCQvHtF91fZQoaAZHQJnJ8ljVhCtoB03oA2gIR0CkqTdwvQF+dX2UKGgGR0CXVLbPQfITaAdN6ANoCEdApKueYSg5BHV9lChoBkdAljZo7eVLSWgHTegDaAhHQKStFEHdGiJ1fZQoaAZHQJPLNbzK9wpoB03oA2gIR0CksLLlNlAedX2UKGgGR0CWNIBqKxcFaAdN6ANoCEdApLLaU5dWyXV9lChoBkdAljfmYOUdJmgHTegDaAhHQKS1dbwjMV11fZQoaAZHQIeY3Pu5SWJoB03oA2gIR0CktvSWJJoTdX2UKGgGR0CX2Um7J4jbaAdN6ANoCEdApLq2UKRdQnV9lChoBkdAmKADOPeYUmgHTegDaAhHQKS9AyHmA9V1fZQoaAZHQJYYSQmu1WtoB03oA2gIR0Ckv5q+8Gs4dX2UKGgGR0CY0sVy3kPuaAdN6ANoCEdApMEgU34sVnV9lChoBkdAlGGyeVcD82gHTegDaAhHQKTE5Bi1Aqx1fZQoaAZHQJt1aZ3LV4JoB03oA2gIR0Ckxx+XiR4hdX2UKGgGR0CWsccUdq+KaAdN6ANoCEdApMmHvMKTjnV9lChoBkdAl3SOnqFAV2gHTegDaAhHQKTK+tqYZ2p1fZQoaAZHQJkR3VbzK9xoB03oA2gIR0CkzqrVe8f3dX2UKGgGR0CZCJfWMCLdaAdN6ANoCEdApNDia7VawHV9lChoBkdAmtQChvitJWgHTegDaAhHQKTTCbgCOm11fZQoaAZHQJpQDujRD1JoB03oA2gIR0Ck1EU1Q66rdX2UKGgGR0CLEMRRMvh7aAdN6ANoCEdApNfI2sJY1nV9lChoBkdAmzxou9OARWgHTegDaAhHQKTZ2zFdcB51fZQoaAZHQJbEocm0E5hoB03oA2gIR0Ck3CMZgogFdX2UKGgGR0CY/s4jbBXTaAdN6ANoCEdApN1z1yvLYHV9lChoBkdAlhDCeumrKmgHTegDaAhHQKThMe7tiQV1fZQoaAZHQJUWGd+XqqxoB03oA2gIR0Ck4yNQKrq/dX2UKGgGR0CYdsF6iTMaaAdN6ANoCEdApOWSErXlKnV9lChoBkdAjqG6BiCrcWgHTegDaAhHQKTmxErGza91fZQoaAZHQJT1bspobn5oB03oA2gIR0Ck6i85bQkYdX2UKGgGR0Cbt3q3EyckaAdN6ANoCEdApOwXTiKiwnVlLg=="
93
+ },
94
+ "ep_success_buffer": {
95
+ ":type:": "<class 'collections.deque'>",
96
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
97
+ },
98
+ "_n_updates": 62500,
99
+ "n_steps": 8,
100
+ "gamma": 0.99,
101
+ "gae_lambda": 0.9,
102
+ "ent_coef": 0.0,
103
+ "vf_coef": 0.4,
104
+ "max_grad_norm": 0.5,
105
+ "normalize_advantage": false
106
+ }
a2c-AntBulletEnv-v0/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b0c54b9f73207f9085015dad92fbbf031039f4086d9c4e69bb065dd18101906d
3
+ size 56190
a2c-AntBulletEnv-v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:02e5b32cfe407b8088f7bb52a26882ec05d40e9f95e94ff673def3648fa12bc4
3
+ size 56958
a2c-AntBulletEnv-v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-AntBulletEnv-v0/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.15.79.1-microsoft-standard-WSL2-x86_64-with-glibc2.35 # 1 SMP Wed Nov 23 01:01:46 UTC 2022
2
+ - Python: 3.10.6
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu117
5
+ - GPU Enabled: True
6
+ - Numpy: 1.23.4
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fc076e375b0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fc076e37640>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fc076e376d0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fc076e37760>", "_build": "<function ActorCriticPolicy._build at 0x7fc076e377f0>", "forward": "<function ActorCriticPolicy.forward at 0x7fc076e37880>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fc076e37910>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fc076e379a0>", "_predict": "<function ActorCriticPolicy._predict at 0x7fc076e37a30>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fc076e37ac0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fc076e37b50>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fc076e37be0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fc076e328c0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgLSxyFlIwBQ5R0lFKUjARoaWdolGgTKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLHIWUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCJLHIWUaBZ0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAEBAQEBAQEBlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000.0, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1675532596059218480, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV2QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMUy9ob21lL2FudG9pbmUvLmxvY2FsL2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgkMCBAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxTL2hvbWUvYW50b2luZS8ubG9jYWwvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP091EE1VHWmFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAO/vMj99sSE/it3lPvRyRT+wKvq+3OCBP2G8Ez5bXZe/REV5P1J/oL5ozkG/hQcTPsJfbb7wbow+X+t7PsLSTT/+V64/rdggv4Sntr5vKFW+7Monvy0AL8AMN8s/nXgvPhzvn7/HjAs/1On3Ppslej8axpQ/kxd3viFnHD9ICmA+5iArv6allL8oJWy+63TyP+wlcj9zHEq969lavlLzQUBfaJA/rfkkwDnvd8DIHC8/PX1Yvx6uhcC8Pk/A+NO4P+WGgL8dtag+0eHHPnJdCsAc75+/x4wLP9ksBMC6/oK/mgLOPmfJXj8dd4k+abf1Px8SjD6vXqw/uWAUv1srmD2d1nE/29cZvS+6dr4MnhU/YO8BP6KsX7+pwak+4stuPhCoLT+DMdC/dF+FvxQkIj+fCka/FM+Zv7k/Pj9cdqO/buJMP8eMCz/U6fc+uv6Cvxu8mj2wT6Q/3cdjviVafj9tC9A/CxshvSdBuD4FD62+cFRxPybzabx8MxC/RKODPyUOcD80u8Y+jdu+PpxCmDtS8ZE/JUMTP18SAj7zqwy/YbKGvrXKjT+DrsI+8hpLvhzvn7/iz+q/1On3Ppslej+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAAMHS63AACAPwAAAAAAAAAAAAAAAAAAAAAAAACACCANPgAAAABE/t2/AAAAANTlH70AAAAA1q7qPwAAAADidA2+AAAAAAqC9T8AAAAAMmwCPgAAAABGL+m/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA5tG8NAAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgCUKuj0AAAAAA+j2vwAAAAC5uXo9AAAAAE4m6T8AAAAANEfmvAAAAACMHfI/AAAAAOejkr0AAAAAslfdvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIKxebYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIA0LAs+AAAAAKUG678AAAAA3k3FPAAAAABomu0/AAAAALEfUj0AAAAAv4bwPwAAAABvu849AAAAALeV378AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC1sqK2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAxQfmPAAAAABQYeW/AAAAAC15Az0AAAAAvGbvPwAAAAAs68S9AAAAAEMc2j8AAAAAiujdPQAAAABcueq/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJt1LRPXTVmMAWyUTegDjAF0lEdApAHHTiKiwnV9lChoBkdAm1yh6rvLHWgHTegDaAhHQKQDQbMHKOl1fZQoaAZHQJrBzag2609oB03oA2gIR0CkBsOX3QD3dX2UKGgGR0CbXwaqjrRjaAdN6ANoCEdApAkNnRLK3nV9lChoBkdAdXpNVzZHu2gHTegDaAhHQKQLg5FPSD11fZQoaAZHQJcB9DVpblloB03oA2gIR0CkDQhTwUg0dX2UKGgGR0CZPn6cy31BaAdN6ANoCEdApBDGAoXsPnV9lChoBkdAlv0PrKNhmWgHTegDaAhHQKQTErXlKbt1fZQoaAZHQJiZWi9IwudoB03oA2gIR0CkFXq+i8FqdX2UKGgGR0CZK22IwdsBaAdN6ANoCEdApBbiAe7tiXV9lChoBkdAlWrMkhRqGmgHTegDaAhHQKQaa1O0svt1fZQoaAZHQJdjp01ZTydoB03oA2gIR0CkHJrRKHwgdX2UKGgGR0CWsN8Hv+fiaAdN6ANoCEdApB7RCQcPv3V9lChoBkdAlYExtYSxq2gHTegDaAhHQKQgEi1y/9J1fZQoaAZHQJM+LRD1GspoB03oA2gIR0CkI5v91loUdX2UKGgGR0CVvYAxi5NHaAdN6ANoCEdApCVR2MbWE3V9lChoBkdAl7Y0+xGDtmgHTegDaAhHQKQnscI7eVN1fZQoaAZHQJkd79bX6IpoB03oA2gIR0CkKP/ChvitdX2UKGgGR0CYPfTy8SPEaAdN6ANoCEdApCyRqREF4nV9lChoBkdAle4mJN0vG2gHTegDaAhHQKQueKv3ai91fZQoaAZHQJVhoIrvsqtoB03oA2gIR0CkMRYdZJTVdX2UKGgGR0CUX2u1ndweaAdN6ANoCEdApDJgV6/qPnV9lChoBkdAlIO68lHBlGgHTegDaAhHQKQ13BHCoCN1fZQoaAZHQJNjq5d4VypoB03oA2gIR0CkN7ZrHlwMdX2UKGgGR0CS+o/2TPjXaAdN6ANoCEdApDokTFl05nV9lChoBkdAl/o62F36h2gHTegDaAhHQKQ7xaLXL/11fZQoaAZHQJL8aCI1tO5oB03oA2gIR0CkP5HLzPKMdX2UKGgGR0CWe8dkJ8fFaAdN6ANoCEdApEF7tb9qDnV9lChoBkdAmxD+5J9RaWgHTegDaAhHQKRDxagVXV91fZQoaAZHQJkvQldC3PRoB03oA2gIR0CkRUW9L6DXdX2UKGgGR0CWhiIvJzT4aAdN6ANoCEdApEkUSmIj4nV9lChoBkdAkuM1HJ9y92gHTegDaAhHQKRLHvE0iyJ1fZQoaAZHQJjPSOyVv/BoB03oA2gIR0CkTblZPl+3dX2UKGgGR0CUVg0JWvKVaAdN6ANoCEdApE8jDn/1hHV9lChoBkdAle4PlEJBxGgHTegDaAhHQKRSYScslLR1fZQoaAZHQJnUfyqdYnxoB03oA2gIR0CkVGvl+3H8dX2UKGgGR0CZHyK2rn1WaAdN6ANoCEdApFbVpfx+a3V9lChoBkdAm7O2yon8bmgHTegDaAhHQKRYUJYT0xx1fZQoaAZHQJjIlhhH9WJoB03oA2gIR0CkW5mGEf1ZdX2UKGgGR0CX/3rYXfqHaAdN6ANoCEdApF2sWAPNFHV9lChoBkdAmTcfiYLLIWgHTegDaAhHQKRf0ao/A0t1fZQoaAZHQJlfX7gsK9hoB03oA2gIR0CkYP0G/vfCdX2UKGgGR0CZPZ/u9eyBaAdN6ANoCEdApGSSBiCrcXV9lChoBkdAmBeFoHs1K2gHTegDaAhHQKRmmtRvWH11fZQoaAZHQJWWp/smfGxoB03oA2gIR0CkaPbXHzYmdX2UKGgGR0CVR/4QSSNgaAdN6ANoCEdApGo12ki2UnV9lChoBkdAlJu/fj0cwWgHTegDaAhHQKRt7SAH3UR1fZQoaAZHQJiu1Bu4wytoB03oA2gIR0Ckb9+CK77LdX2UKGgGR0CTWbiDdxhlaAdN6ANoCEdApHJW1pj+aXV9lChoBkdAk+YO8scyWWgHTegDaAhHQKRzlON5t3x1fZQoaAZHQJRLyuU2UB5oB03oA2gIR0CkdzcGs3hodX2UKGgGR0CLrjz+3pfQaAdN6ANoCEdApHkDDEWIoHV9lChoBkdAkuT98NQTEmgHTegDaAhHQKR7g02tMf11fZQoaAZHQI89G16Vt41oB03oA2gIR0CkfQKsEJSjdX2UKGgGR0CWrbacI7eVaAdN6ANoCEdApICYCZF5OnV9lChoBkdAmbPUiyIHkmgHTegDaAhHQKSCvx6v7nB1fZQoaAZHQJdN8AsCkoFoB03oA2gIR0CkhV9NnGsFdX2UKGgGR0CVJiJ04iosaAdN6ANoCEdApIbHYWcjJXV9lChoBkdAl0osqrilzmgHTegDaAhHQKSKeuMdcSp1fZQoaAZHQJlhQClrM1VoB03oA2gIR0CkjHktEofCdX2UKGgGR0CYKmEbo8p1aAdN6ANoCEdApI8HQv6CUXV9lChoBkdAk9p4UN8VpWgHTegDaAhHQKSQTkrf+CN1fZQoaAZHQJVl51SwW31oB03oA2gIR0Ckk+nNxEORdX2UKGgGR0CcTN2g3974aAdN6ANoCEdApJXgA2hqTXV9lChoBkdAmFE+6/ZdwGgHTegDaAhHQKSYJbTtsvZ1fZQoaAZHQJhstALRa5hoB03oA2gIR0CkmaPTgEU1dX2UKGgGR0CYqcb/ffoBaAdN6ANoCEdApJ0jw+dK/XV9lChoBkdAmkrgS39aU2gHTegDaAhHQKSfXwOOKfp1fZQoaAZHQJeKLTx5LRNoB03oA2gIR0CkofszVMEidX2UKGgGR0CYnDYfW+XaaAdN6ANoCEdApKN0iB5HE3V9lChoBkdAmSnK5oXbd2gHTegDaAhHQKSnCQvHtF91fZQoaAZHQJnJ8ljVhCtoB03oA2gIR0CkqTdwvQF+dX2UKGgGR0CXVLbPQfITaAdN6ANoCEdApKueYSg5BHV9lChoBkdAljZo7eVLSWgHTegDaAhHQKStFEHdGiJ1fZQoaAZHQJPLNbzK9wpoB03oA2gIR0CksLLlNlAedX2UKGgGR0CWNIBqKxcFaAdN6ANoCEdApLLaU5dWyXV9lChoBkdAljfmYOUdJmgHTegDaAhHQKS1dbwjMV11fZQoaAZHQIeY3Pu5SWJoB03oA2gIR0CktvSWJJoTdX2UKGgGR0CX2Um7J4jbaAdN6ANoCEdApLq2UKRdQnV9lChoBkdAmKADOPeYUmgHTegDaAhHQKS9AyHmA9V1fZQoaAZHQJYYSQmu1WtoB03oA2gIR0Ckv5q+8Gs4dX2UKGgGR0CY0sVy3kPuaAdN6ANoCEdApMEgU34sVnV9lChoBkdAlGGyeVcD82gHTegDaAhHQKTE5Bi1Aqx1fZQoaAZHQJt1aZ3LV4JoB03oA2gIR0Ckxx+XiR4hdX2UKGgGR0CWsccUdq+KaAdN6ANoCEdApMmHvMKTjnV9lChoBkdAl3SOnqFAV2gHTegDaAhHQKTK+tqYZ2p1fZQoaAZHQJkR3VbzK9xoB03oA2gIR0CkzqrVe8f3dX2UKGgGR0CZCJfWMCLdaAdN6ANoCEdApNDia7VawHV9lChoBkdAmtQChvitJWgHTegDaAhHQKTTCbgCOm11fZQoaAZHQJpQDujRD1JoB03oA2gIR0Ck1EU1Q66rdX2UKGgGR0CLEMRRMvh7aAdN6ANoCEdApNfI2sJY1nV9lChoBkdAmzxou9OARWgHTegDaAhHQKTZ2zFdcB51fZQoaAZHQJbEocm0E5hoB03oA2gIR0Ck3CMZgogFdX2UKGgGR0CY/s4jbBXTaAdN6ANoCEdApN1z1yvLYHV9lChoBkdAlhDCeumrKmgHTegDaAhHQKThMe7tiQV1fZQoaAZHQJUWGd+XqqxoB03oA2gIR0Ck4yNQKrq/dX2UKGgGR0CYdsF6iTMaaAdN6ANoCEdApOWSErXlKnV9lChoBkdAjqG6BiCrcWgHTegDaAhHQKTmxErGza91fZQoaAZHQJT1bspobn5oB03oA2gIR0Ck6i85bQkYdX2UKGgGR0Cbt3q3EyckaAdN6ANoCEdApOwXTiKiwnVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.15.79.1-microsoft-standard-WSL2-x86_64-with-glibc2.35 # 1 SMP Wed Nov 23 01:01:46 UTC 2022", "Python": "3.10.6", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu117", "GPU Enabled": "True", "Numpy": "1.23.4", "Gym": "0.21.0"}}
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c5621ae999069c01aa4c2cacbbffe5366d687d21e3cccf2ddde4c894c04d8823
3
+ size 1073798
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 1680.6750665399245, "std_reward": 138.86816381602313, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-04T19:30:41.039387"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f5d29ca038693685131313b61c7d4f712cc1714b6f05c7ee9cd704a71bf42d1f
3
+ size 2521