File size: 1,393 Bytes
b0901e2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fc20e39
b0901e2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fc20e39
b0901e2
fc20e39
 
b0901e2
 
fc20e39
b0901e2
 
 
 
 
fc20e39
 
b0901e2
 
 
 
fc20e39
b0901e2
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
---
license: mit
base_model: VietAI/vit5-large
tags:
- generated_from_trainer
model-index:
- name: pretrain-vit5-large
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# pretrain-vit5-large

This model is a fine-tuned version of [VietAI/vit5-large](https://huggingface.co/VietAI/vit5-large) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2677

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10

### Training results

| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 1.4276        | 4.56  | 200  | 0.2848          |
| 0.4608        | 9.12  | 400  | 0.2677          |


### Framework versions

- Transformers 4.33.2
- Pytorch 2.0.1+cu117
- Datasets 2.14.5
- Tokenizers 0.13.3