--- base_model: - microsoft/trocr-base-printed --- # anuashok/ocr-captcha-1 This model is a fine-tuned version of [microsoft/trocr-base-printed](https://huggingface.co/microsoft/trocr-base-printed) on your custom dataset. ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6569b4be1bac1166939f86b2/9JB_SAnLI9qtwceTlzgqS.png) ## Training Summary - **CER**: 0.0496031746031746 - **Hyperparameters**: - Learning Rate: 3.4123022229050474e-05 - Batch Size: 8 - Num Epochs: 6 - Warmup Ratio: 0.057604550826554274 - Weight Decay: 0.0716137163865213 - Num Beams: 5 - Length Penalty: 0.8270021759785869 ## Usage ```python from transformers import VisionEncoderDecoderModel, TrOCRProcessor import torch from PIL import Image # Load model and processor processor = TrOCRProcessor.from_pretrained("anuashok/ocr-captcha-1") model = VisionEncoderDecoderModel.from_pretrained("anuashok/ocr-captcha-1") # Load image image = Image.open('path_to_your_image.jpg').convert("RGB") # Prepare image pixel_values = processor(image, return_tensors="pt").pixel_values # Generate text generated_ids = model.generate(pixel_values) generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0] print(generated_text)