metadata
license: cc-by-4.0
base_model: EMBEDDIA/crosloengual-bert
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
model-index:
- name: fine_tuned_rte_croslo
results: []
fine_tuned_rte_croslo
This model is a fine-tuned version of EMBEDDIA/crosloengual-bert on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.6954
- Accuracy: 0.6207
- F1: 0.6090
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 400
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
---|---|---|---|---|---|
0.6763 | 1.7241 | 50 | 0.7138 | 0.4483 | 0.4145 |
0.5789 | 3.4483 | 100 | 0.6502 | 0.5517 | 0.5215 |
0.4644 | 5.1724 | 150 | 0.6409 | 0.6552 | 0.6552 |
0.3137 | 6.8966 | 200 | 0.6524 | 0.5862 | 0.5222 |
0.2053 | 8.6207 | 250 | 0.6379 | 0.6552 | 0.6388 |
0.1242 | 10.3448 | 300 | 0.6661 | 0.6207 | 0.6090 |
0.0737 | 12.0690 | 350 | 0.6753 | 0.6207 | 0.6090 |
0.0521 | 13.7931 | 400 | 0.6954 | 0.6207 | 0.6090 |
Framework versions
- Transformers 4.40.2
- Pytorch 2.1.1+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1