kbd-vits-tts-female / train_vits.py
anzorq's picture
Upload folder using huggingface_hub
2688851
import os
from trainer import Trainer, TrainerArgs
from TTS.tts.configs.shared_configs import BaseDatasetConfig , CharactersConfig
from TTS.config.shared_configs import BaseAudioConfig
from TTS.tts.configs.vits_config import VitsConfig
from TTS.tts.datasets import load_tts_samples
from TTS.tts.models.vits import Vits, VitsAudioConfig
from TTS.tts.utils.text.tokenizer import TTSTokenizer
from TTS.utils.audio import AudioProcessor
from TTS.utils.downloaders import download_thorsten_de
output_path = os.path.dirname(os.path.abspath(__file__))
dataset_config = BaseDatasetConfig(
formatter="mozilla", meta_file_train="metadata.csv", path="dataset/"
)
audio_config = BaseAudioConfig(
sample_rate=24000,
do_trim_silence=True,
resample=False,
mel_fmin=0,
mel_fmax=None
)
character_config=CharactersConfig(
characters='abnhikorstабвгдежзийклмнопрстуфхцчшщъыьэюяӏ',
punctuations='!"(),-.:?«»– ',
phonemes='',
pad="<PAD>",
eos="<EOS>",
bos="<BOS>",
blank="<BLNK>",
)
config = VitsConfig(
dashboard_logger='wandb',
audio=audio_config,
run_name="vits_kbd_female",
batch_size=24,
eval_batch_size=16,
batch_group_size=5,
num_loader_workers=0,
num_eval_loader_workers=2,
run_eval=True,
test_delay_epochs=-1,
epochs=1000,
save_step=1000,
text_cleaner="basic_cleaners",
use_phonemes=False,
#phoneme_language="fa",
characters=character_config,
phoneme_cache_path=os.path.join(output_path, "phoneme_cache"),
compute_input_seq_cache=True,
print_step=25,
print_eval=True,
mixed_precision=False,
test_sentences=[
["умыпӏащӏэу къедаӏуи псори къэпщӏэнщ"],
["щиху тхьэмпэ цӏыкӏухэм загъэсысу абы сэлам ирахыж щхьэкӏэ псыгъуэ лантӏэхэм загъэшауэ щхьэщэ хуащӏыж"],
["уэрамыбгъум къытеува цӏыху ӏувым я нэр тодие кхъэм яхьым"],
["дэнэ фхьа си лъагъуныгъэр"],
["а махуэм ежьащ цӏыху гъащӏэр зытекӏуэда лъагъуныгъэр"],
["езыхэри лэжьыгъэфӏкӏэ зи цӏэ къаӏэт къуажэ щӏалэгъуалэм ящыщт"],
["дауэ хъуами фенэ къуажэм яфӏэӏеякъым къэзыша унагъуэрти — я нэ-я псэт"],
["хъыджэбзри щтэжри екъужауэ жаӏэ ауэ хухэчыжакъым"],
["ауэ абыи куэд ихьакъым"]
],
output_path=output_path,
datasets=[dataset_config],
)
# INITIALIZE THE AUDIO PROCESSOR
# Audio processor is used for feature extraction and audio I/O.
# It mainly serves to the dataloader and the training loggers.
ap = AudioProcessor.init_from_config(config)
# INITIALIZE THE TOKENIZER
# Tokenizer is used to convert text to sequences of token IDs.
# config is updated with the default characters if not defined in the config.
tokenizer, config = TTSTokenizer.init_from_config(config)
# LOAD DATA SAMPLES
# Each sample is a list of ```[text, audio_file_path, speaker_name]```
# You can define your custom sample loader returning the list of samples.
# Or define your custom formatter and pass it to the `load_tts_samples`.
# Check `TTS.tts.datasets.load_tts_samples` for more details.
train_samples, eval_samples = load_tts_samples(
dataset_config,
eval_split=True,
eval_split_max_size=config.eval_split_max_size,
eval_split_size=config.eval_split_size,
)
# init model
model = Vits(config, ap, tokenizer, speaker_manager=None)
# init the trainer and 🚀
trainer = Trainer(
TrainerArgs(),
config,
output_path,
model=model,
train_samples=train_samples,
eval_samples=eval_samples,
)
trainer.fit()