--- library_name: peft base_model: openai/whisper-large-v2 --- Use language="Georgian" for inference. # Inference ```Python import torch import gradio as gr from transformers import ( AutomaticSpeechRecognitionPipeline, WhisperForConditionalGeneration, WhisperTokenizer, WhisperProcessor, ) from peft import PeftModel, PeftConfig from pytube import YouTube peft_model_id = "anzorq/openai-whisper-large-v2-LORA-colab" # peft_model_id = "/content/whisper_large_kbd_lora/checkpoint-64" language = "Georgian" task = "transcribe" peft_config = PeftConfig.from_pretrained(peft_model_id) model = WhisperForConditionalGeneration.from_pretrained( peft_config.base_model_name_or_path, load_in_8bit=True, device_map="auto" ) model = PeftModel.from_pretrained(model, peft_model_id) tokenizer = WhisperTokenizer.from_pretrained(peft_config.base_model_name_or_path, language=language, task=task) processor = WhisperProcessor.from_pretrained(peft_config.base_model_name_or_path, language=language, task=task) feature_extractor = processor.feature_extractor forced_decoder_ids = processor.get_decoder_prompt_ids(language=language, task=task) pipe = AutomaticSpeechRecognitionPipeline(model=model, tokenizer=tokenizer, feature_extractor=feature_extractor) def transcribe(path_to_audio): with torch.cuda.amp.autocast(): text = pipe(audio_path, generate_kwargs={"forced_decoder_ids": forced_decoder_ids}, max_new_tokens=255)["text"] return text transcribe(path_to_audio) ``` ## Training Details ### Training Data [More Information Needed] ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.6.0.dev0