|
from datasets import load_dataset
|
|
from trl import SFTTrainer
|
|
from peft import LoraConfig
|
|
import torch
|
|
from transformers import AutoTokenizer, AutoModelForCausalLM, TrainingArguments, BitsAndBytesConfig
|
|
|
|
|
|
|
|
import mamba_ssm
|
|
|
|
|
|
|
|
|
|
|
|
|
|
quantization_config = BitsAndBytesConfig(
|
|
load_in_4bit=True,
|
|
llm_int4_skip_modules=["mamba"]
|
|
)
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained("jamba")
|
|
|
|
dataset = load_dataset("VishnuPJ/Malayalam_CultureX_IndicCorp_SMC", split="train")
|
|
training_args = TrainingArguments(
|
|
output_dir="./results",
|
|
num_train_epochs=1,
|
|
per_device_train_batch_size=1,
|
|
gradient_accumulation_steps=4,
|
|
optim = "adamw_8bit",
|
|
max_grad_norm = 0.3,
|
|
weight_decay = 0.001,
|
|
warmup_ratio = 0.03,
|
|
gradient_checkpointing=True,
|
|
logging_dir='./logs',
|
|
logging_steps=1,
|
|
max_steps=50,
|
|
group_by_length=True,
|
|
lr_scheduler_type = "linear",
|
|
learning_rate=2e-3
|
|
)
|
|
lora_config = LoraConfig(
|
|
lora_alpha=16,
|
|
lora_dropout=0.05,
|
|
init_lora_weights=False,
|
|
r=8,
|
|
target_modules=["embed_tokens", "x_proj", "in_proj", "out_proj"],
|
|
task_type="CAUSAL_LM",
|
|
bias="none"
|
|
)
|
|
|
|
model = AutoModelForCausalLM.from_pretrained(
|
|
"jamba",
|
|
trust_remote_code=True,
|
|
device_map='auto',
|
|
attn_implementation="flash_attention_2",
|
|
quantization_config=quantization_config,
|
|
use_mamba_kernels=True
|
|
)
|
|
|
|
trainer = SFTTrainer(
|
|
model=model,
|
|
tokenizer=tokenizer,
|
|
args=training_args,
|
|
peft_config=lora_config,
|
|
train_dataset=dataset,
|
|
max_seq_length = 256,
|
|
dataset_text_field="quote",
|
|
)
|
|
|
|
trainer.train() |