File size: 10,176 Bytes
57cf122
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
import os
import random
from datasets import ClassLabel, Dataset, DatasetDict, load_dataset
from datasets.features import Audio
import pandas as pd
import numpy as np
from tqdm import tqdm
from IPython.display import display, HTML

# Function to load your custom dataset
def load_custom_dataset(data_dir):
    data = {
        "audio": [],
        "text": []
    }

    wav_dir = os.path.join(data_dir, 'wav')
    txt_dir = os.path.join(data_dir, 'transcription')

        # Assuming filenames in 'wav' and 'txt' match
    for wav_file in os.listdir(wav_dir):
            if wav_file.endswith('.wav'):
                txt_file = wav_file.replace('.wav', '.txt')
                wav_path = os.path.join(wav_dir, wav_file)
                txt_path = os.path.join(txt_dir, txt_file)

                # Read the transcription text
                with open(txt_path, 'r', encoding='utf-8') as f:
                    transcription = f.read().strip()

                # Append to the dataset
                data["audio"].append(wav_path)
                data["text"].append(transcription)

    # Create a pandas dataframe
    df = pd.DataFrame(data)

    # Convert to a Hugging Face dataset
    dataset = Dataset.from_pandas(df)

    # Define the audio feature (for .wav files)
    dataset = dataset.cast_column("audio", Audio(sampling_rate=16_000))  # Adjust the sampling rate if needed

    return dataset

custom_train_dataset = load_custom_dataset("./")

# Combine them into a DatasetDict
dataset_dict = DatasetDict({
    "train": custom_train_dataset,
})

# Select 975 random samples from train and add them to test
train_size = len(dataset_dict["train"])
sample_indices = random.sample(range(train_size), 975)

# Select the samples
test_samples = dataset_dict["train"].select(sample_indices)

# Filter out the selected samples from the train dataset
remaining_train_samples = dataset_dict["train"].filter(lambda example, idx: idx not in sample_indices, with_indices=True)

# Add the selected samples to the test dataset
dataset_dict["test"] = test_samples
dataset_dict["train"] = remaining_train_samples

print(dataset_dict)

def show_random_elements(dataset, num_examples=10):
    assert num_examples <= len(dataset), "Can't pick more elements than there are in the dataset."
    picks = []
    for _ in range(num_examples):
        pick = random.randint(0, len(dataset)-1)
        while pick in picks:
            pick = random.randint(0, len(dataset)-1)
        picks.append(pick)

    df = pd.DataFrame(dataset[picks])

show_random_elements(dataset_dict["train"])

import re
chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"]'

def remove_special_characters(batch):
    batch["text"] = re.sub(chars_to_ignore_regex, '', batch["text"]).lower()
    return batch

dataset_dict = dataset_dict.map(remove_special_characters)

show_random_elements(dataset_dict["train"])

def extract_all_chars(batch):
  all_text = " ".join(batch["text"])
  vocab = list(set(all_text))
  return {"vocab": [vocab], "all_text": [all_text]}

vocabs = dataset_dict.map(extract_all_chars, batched=True, batch_size=-1, keep_in_memory=True, remove_columns=dataset_dict.column_names["train"])

vocab_list = list(set(vocabs["train"]["vocab"][0]))

vocab_dict = {v: k for k, v in enumerate(vocab_list)}
print(vocab_dict)

vocab_dict["[UNK]"] = len(vocab_dict)
vocab_dict["[PAD]"] = len(vocab_dict)
print(len(vocab_dict))

import json
with open('vocab.json', 'w') as vocab_file:
    json.dump(vocab_dict, vocab_file)

from transformers import Wav2Vec2CTCTokenizer

tokenizer = Wav2Vec2CTCTokenizer("./vocab.json", unk_token="[UNK]", pad_token="[PAD]", word_delimiter_token="|", vocab_size=len(vocab_dict))

from transformers import Wav2Vec2FeatureExtractor

feature_extractor = Wav2Vec2FeatureExtractor(feature_size=1, sampling_rate=16000, padding_value=0.0, do_normalize=True, return_attention_mask=False)

from transformers import Wav2Vec2Processor

processor = Wav2Vec2Processor(feature_extractor=feature_extractor, tokenizer=tokenizer)

rand_int = random.randint(0, len(dataset_dict["train"]))

print("Target text:", dataset_dict["train"][rand_int]["text"])
print("Input array shape:", np.asarray(dataset_dict["train"][rand_int]["audio"]["array"]).shape)
print("Sampling rate:", dataset_dict["train"][rand_int]["audio"]["sampling_rate"])

def prepare_dataset(batch):
    audio = batch["audio"]

    # batched output is "un-batched" to ensure mapping is correct
    batch["input_values"] = processor(audio["array"], sampling_rate=audio["sampling_rate"]).input_values[0]

    with processor.as_target_processor():
        batch["labels"] = processor(batch["text"]).input_ids
    return batch

dataset_dict = dataset_dict.map(prepare_dataset, remove_columns=dataset_dict.column_names["train"], num_proc=None)

import torch

from dataclasses import dataclass, field
from typing import Any, Dict, List, Optional, Union

@dataclass
class DataCollatorCTCWithPadding:
    """
    Data collator that will dynamically pad the inputs received.
    Args:
        processor (:class:`~transformers.Wav2Vec2Processor`)
            The processor used for proccessing the data.
        padding (:obj:`bool`, :obj:`str` or :class:`~transformers.tokenization_utils_base.PaddingStrategy`, `optional`, defaults to :obj:`True`):
            Select a strategy to pad the returned sequences (according to the model's padding side and padding index)
            among:
            * :obj:`True` or :obj:`'longest'`: Pad to the longest sequence in the batch (or no padding if only a single
              sequence if provided).
            * :obj:`'max_length'`: Pad to a maximum length specified with the argument :obj:`max_length` or to the
              maximum acceptable input length for the model if that argument is not provided.
            * :obj:`False` or :obj:`'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of
              different lengths).
        max_length (:obj:`int`, `optional`):
            Maximum length of the ``input_values`` of the returned list and optionally padding length (see above).
        max_length_labels (:obj:`int`, `optional`):
            Maximum length of the ``labels`` returned list and optionally padding length (see above).
        pad_to_multiple_of (:obj:`int`, `optional`):
            If set will pad the sequence to a multiple of the provided value.
            This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability >=
            7.5 (Volta).
    """

    processor: Wav2Vec2Processor
    padding: Union[bool, str] = True
    max_length: Optional[int] = None
    max_length_labels: Optional[int] = None
    pad_to_multiple_of: Optional[int] = None
    pad_to_multiple_of_labels: Optional[int] = None

    def __call__(self, features: List[Dict[str, Union[List[int], torch.Tensor]]]) -> Dict[str, torch.Tensor]:
        # split inputs and labels since they have to be of different lengths and need
        # different padding methods
        input_features = [{"input_values": feature["input_values"]} for feature in features]
        label_features = [{"input_ids": feature["labels"]} for feature in features]

        batch = self.processor.pad(
            input_features,
            padding=self.padding,
            max_length=self.max_length,
            pad_to_multiple_of=self.pad_to_multiple_of,
            return_tensors="pt",
        )
        with self.processor.as_target_processor():
            labels_batch = self.processor.pad(
                label_features,
                padding=self.padding,
                max_length=self.max_length_labels,
                pad_to_multiple_of=self.pad_to_multiple_of_labels,
                return_tensors="pt",
            )

        # replace padding with -100 to ignore loss correctly
        labels = labels_batch["input_ids"].masked_fill(labels_batch.attention_mask.ne(1), -100)

        batch["labels"] = labels

        return batch

data_collator = DataCollatorCTCWithPadding(processor=processor, padding=True)

import evaluate

wer_metric = evaluate.load("wer")

def compute_metrics(pred):
    pred_logits = pred.predictions
    pred_ids = np.argmax(pred_logits, axis=-1)

    pred.label_ids[pred.label_ids == -100] = processor.tokenizer.pad_token_id

    pred_str = processor.batch_decode(pred_ids)
    # we do not want to group tokens when computing the metrics
    label_str = processor.batch_decode(pred.label_ids, group_tokens=False)

    wer = wer_metric.compute(predictions=pred_str, references=label_str)

    return {"wer": wer}

from transformers import Wav2Vec2ForCTC

model = Wav2Vec2ForCTC.from_pretrained(
    "facebook/wav2vec2-base",
    ctc_loss_reduction="mean",
    pad_token_id=processor.tokenizer.pad_token_id,
    vocab_size=len(vocab_dict),
)

model.freeze_feature_encoder()

model.gradient_checkpointing_enable()

from transformers import TrainingArguments

training_args = TrainingArguments(
  output_dir='wav2vec2-mal',
  group_by_length=True,
  per_device_train_batch_size=24,
  eval_strategy="steps",
  num_train_epochs=30,
  fp16=True,
  #gradient_checkpointing=True,
  save_steps=500,
  eval_steps=500,
  logging_steps=500,
  learning_rate=1e-4,
  weight_decay=0.005,
  warmup_steps=1000,
  save_total_limit=2,
)

from transformers import Trainer

trainer = Trainer(
    model=model,
    data_collator=data_collator,
    args=training_args,
    compute_metrics=compute_metrics,
    train_dataset=dataset_dict["train"],
    eval_dataset=dataset_dict["test"],
    processing_class=processor.feature_extractor,
)

trainer.train()

def map_to_result(batch):
  with torch.no_grad():
    input_values = torch.tensor(batch["input_values"], device="cuda").unsqueeze(0)
    logits = model(input_values).logits

  pred_ids = torch.argmax(logits, dim=-1)
  batch["pred_str"] = processor.batch_decode(pred_ids)[0]
  batch["text"] = processor.decode(batch["labels"], group_tokens=False)

  return batch

results = dataset_dict["test"].map(map_to_result, remove_columns=dataset_dict["test"].column_names)

print("Test WER: {:.3f}".format(wer_metric.compute(predictions=results["pred_str"], references=results["text"])))