qc903113684 commited on
Commit
a9a8cec
·
verified ·
1 Parent(s): 8d6ff9b

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +16 -1
README.md CHANGED
@@ -7,4 +7,19 @@ license: apache-2.0
7
 
8
  YOLO algorithm is the most typical representative of one-stage target detection algorithm.
9
 
10
- It is based on deep neural network for object recognition and positioning. It runs very fast and can be used in real-time systems. YOLOv8 is currently the most advanced algorithm of the YOLO series, surpassing the previous YOLO series in terms of accuracy and speed.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7
 
8
  YOLO algorithm is the most typical representative of one-stage target detection algorithm.
9
 
10
+ It is based on deep neural network for object recognition and positioning. It runs very fast and can be used in real-time systems. YOLOv8 is currently the most advanced algorithm of the YOLO series, surpassing the previous YOLO series in terms of accuracy and speed.
11
+
12
+ The model can be found [here](https://github.com/ultralytics/ultralytics)
13
+
14
+
15
+ |Device|SoC|Runtime|Model|Size (pixels)|Inference Time (ms)|Precision|Compute Unity|Model Download|
16
+ |:----:|:----:|:----:|:----:|:----:|:----:|:----:|:----:|:----:|
17
+ |AidBox QCS6490|QCS6490|QNN|YOLOv8s(cutoff)|640|11.1|INT8|NPU|[model download]()|
18
+ |AidBox QCS6490|QCS6490|QNN|YOLOv8s(cutoff)|640|24.8|INT16|NPU|[model download]()|
19
+ |AidBox QCS6490|QCS6490|SNPE|YOLOv8s(cutoff)|640|9.6|INT8|NPU|[model download]()|
20
+ |AidBox QCS6490|QCS6490|SNPE|YOLOv8s(cutoff)|640|22.1|INT16|NPU|[model download]()|
21
+ |AidBox GS865|QCS8250|SNPE|YOLOv8s(cutoff)|640|35|INT8|NPU|[model download]()|
22
+ |APLUX QCS8550|QCS8550|QNN|YOLOv8s(cutoff)|640|8.7|INT8|NPU|[model download](https://huggingface.co/aidlux/YOLOv8/blob/main/QCS8550/cutoff_yolov8s_int8.qnn.serialized.bin)|
23
+ |APLUX QCS8550|QCS8550|QNN|YOLOv8s(cutoff)|640|20.3|INT16|NPU|[model download](https://huggingface.co/aidlux/YOLOv8/blob/main/QCS8550/cutoff_yolov8s_int16.qnn.serialized.bin)|
24
+ |APLUX QCS8550|QCS8550|SNPE|YOLOv8s(cutoff)|640|3.8|INT8|NPU|[model download](https://huggingface.co/aidlux/YOLOv8/blob/main/QCS8550/cutoff_yolov8s_int8_htp_snpe2.dlc)|
25
+ |APLUX QCS8550|QCS8550|SNPE|YOLOv8s(cutoff)|640|9.3|INT16|NPU|[model download](https://huggingface.co/aidlux/YOLOv8/blob/main/QCS8550/cutoff_yolov8s_int16_htp_snpe2.dlc)|