qc903113684 commited on
Commit
ac52f0f
·
verified ·
1 Parent(s): e3cf4b1

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +24 -3
README.md CHANGED
@@ -11,7 +11,12 @@ It is based on deep neural network for object recognition and positioning. It ru
11
 
12
  The model can be found [here](https://github.com/ultralytics/ultralytics)
13
 
14
- **Performance on devices**
 
 
 
 
 
15
 
16
  |Device|SoC|Runtime|Model|Size (pixels)|Inference Time (ms)|Precision|Compute Unit|Model Download|
17
  |:----:|:----:|:----:|:----:|:----:|:----:|:----:|:----:|:----:|
@@ -25,7 +30,7 @@ The model can be found [here](https://github.com/ultralytics/ultralytics)
25
  |APLUX QCS8550|QCS8550|SNPE|YOLOv8s(cutoff)|640|9.3|INT16|NPU|[model download](https://huggingface.co/aidlux/YOLOv8/blob/main/Models/QCS8550/cutoff_yolov8s_int16_htp_snpe2.dlc)|
26
  |AidBox GS865|QCS8250|SNPE|YOLOv8s(cutoff)|640|35|INT8|NPU|[model download]()|
27
 
28
- **Demo models conversion**
29
 
30
  Demo models converted from [**AIMO(AI Model Optimizier)**](https://aidlux.com/en/product/aimo).
31
 
@@ -43,4 +48,20 @@ The demo model conversion step on AIMO can be found blow:
43
  |APLUX QCS8550|QCS8550|QNN|YOLOv8s(cutoff)|640|INT16|NPU|[View Steps](https://huggingface.co/aplux/YOLOv8/blob/main/AIMO/QCS8550/aimo_yolov8s_qnn_int16.png)|
44
  |APLUX QCS8550|QCS8550|SNPE|YOLOv8s(cutoff)|640|INT8|NPU|[View Steps](https://huggingface.co/aplux/YOLOv8/blob/main/AIMO/QCS8550/aimo_yolov8s_snpe_int8.png)|
45
  |APLUX QCS8550|QCS8550|SNPE|YOLOv8s(cutoff)|640|INT16|NPU|[View Steps](https://huggingface.co/aplux/YOLOv8/blob/main/AIMO/QCS8550/aimo_yolov8s_snpe_int16.png)|
46
- |AidBox GS865|QCS8250|SNPE|YOLOv8s(cutoff)|640|INT8|NPU|[View Steps]()|
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11
 
12
  The model can be found [here](https://github.com/ultralytics/ultralytics)
13
 
14
+ ## CONTENTS
15
+ - [Performance](#performance)
16
+ - [Model Conversion](#model-conversion)
17
+ - [Inference](#inference)
18
+
19
+ **Performance**
20
 
21
  |Device|SoC|Runtime|Model|Size (pixels)|Inference Time (ms)|Precision|Compute Unit|Model Download|
22
  |:----:|:----:|:----:|:----:|:----:|:----:|:----:|:----:|:----:|
 
30
  |APLUX QCS8550|QCS8550|SNPE|YOLOv8s(cutoff)|640|9.3|INT16|NPU|[model download](https://huggingface.co/aidlux/YOLOv8/blob/main/Models/QCS8550/cutoff_yolov8s_int16_htp_snpe2.dlc)|
31
  |AidBox GS865|QCS8250|SNPE|YOLOv8s(cutoff)|640|35|INT8|NPU|[model download]()|
32
 
33
+ **Models Conversion**
34
 
35
  Demo models converted from [**AIMO(AI Model Optimizier)**](https://aidlux.com/en/product/aimo).
36
 
 
48
  |APLUX QCS8550|QCS8550|QNN|YOLOv8s(cutoff)|640|INT16|NPU|[View Steps](https://huggingface.co/aplux/YOLOv8/blob/main/AIMO/QCS8550/aimo_yolov8s_qnn_int16.png)|
49
  |APLUX QCS8550|QCS8550|SNPE|YOLOv8s(cutoff)|640|INT8|NPU|[View Steps](https://huggingface.co/aplux/YOLOv8/blob/main/AIMO/QCS8550/aimo_yolov8s_snpe_int8.png)|
50
  |APLUX QCS8550|QCS8550|SNPE|YOLOv8s(cutoff)|640|INT16|NPU|[View Steps](https://huggingface.co/aplux/YOLOv8/blob/main/AIMO/QCS8550/aimo_yolov8s_snpe_int16.png)|
51
+ |AidBox GS865|QCS8250|SNPE|YOLOv8s(cutoff)|640|INT8|NPU|[View Steps]()|
52
+
53
+ ## Inference
54
+
55
+ ### Step1: convert model
56
+
57
+ a. Prepare source model in onnx format. The source model can be found [here](https://huggingface.co/aplux/YOLOv8/blob/main/yolov8s.onnx).
58
+
59
+ b. Login [AIMO](https://aidlux.com/en/product/aimo) and convert source model to target format. The model conversion step can follow **AIMO Conversion Step** in [Model Conversion Sheet](#model-conversion).
60
+
61
+ c. After conversion task done, download target model file.
62
+
63
+ ### Step2: install AidLite SDK
64
+
65
+ The installation guide of AidLite SDK can be found [here](https://huggingface.co/datasets/aplux/AIToolKit/blob/main/AidLite%20SDK%20Development%20Documents.md#installation).
66
+
67
+ ### Step3: run demo program