qc903113684
commited on
Update README.md
Browse files
README.md
CHANGED
@@ -11,7 +11,12 @@ It is based on deep neural network for object recognition and positioning. It ru
|
|
11 |
|
12 |
The model can be found [here](https://github.com/ultralytics/ultralytics)
|
13 |
|
14 |
-
|
|
|
|
|
|
|
|
|
|
|
15 |
|
16 |
|Device|SoC|Runtime|Model|Size (pixels)|Inference Time (ms)|Precision|Compute Unit|Model Download|
|
17 |
|:----:|:----:|:----:|:----:|:----:|:----:|:----:|:----:|:----:|
|
@@ -25,7 +30,7 @@ The model can be found [here](https://github.com/ultralytics/ultralytics)
|
|
25 |
|APLUX QCS8550|QCS8550|SNPE|YOLOv8s(cutoff)|640|9.3|INT16|NPU|[model download](https://huggingface.co/aidlux/YOLOv8/blob/main/Models/QCS8550/cutoff_yolov8s_int16_htp_snpe2.dlc)|
|
26 |
|AidBox GS865|QCS8250|SNPE|YOLOv8s(cutoff)|640|35|INT8|NPU|[model download]()|
|
27 |
|
28 |
-
**
|
29 |
|
30 |
Demo models converted from [**AIMO(AI Model Optimizier)**](https://aidlux.com/en/product/aimo).
|
31 |
|
@@ -43,4 +48,20 @@ The demo model conversion step on AIMO can be found blow:
|
|
43 |
|APLUX QCS8550|QCS8550|QNN|YOLOv8s(cutoff)|640|INT16|NPU|[View Steps](https://huggingface.co/aplux/YOLOv8/blob/main/AIMO/QCS8550/aimo_yolov8s_qnn_int16.png)|
|
44 |
|APLUX QCS8550|QCS8550|SNPE|YOLOv8s(cutoff)|640|INT8|NPU|[View Steps](https://huggingface.co/aplux/YOLOv8/blob/main/AIMO/QCS8550/aimo_yolov8s_snpe_int8.png)|
|
45 |
|APLUX QCS8550|QCS8550|SNPE|YOLOv8s(cutoff)|640|INT16|NPU|[View Steps](https://huggingface.co/aplux/YOLOv8/blob/main/AIMO/QCS8550/aimo_yolov8s_snpe_int16.png)|
|
46 |
-
|AidBox GS865|QCS8250|SNPE|YOLOv8s(cutoff)|640|INT8|NPU|[View Steps]()|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
|
12 |
The model can be found [here](https://github.com/ultralytics/ultralytics)
|
13 |
|
14 |
+
## CONTENTS
|
15 |
+
- [Performance](#performance)
|
16 |
+
- [Model Conversion](#model-conversion)
|
17 |
+
- [Inference](#inference)
|
18 |
+
|
19 |
+
**Performance**
|
20 |
|
21 |
|Device|SoC|Runtime|Model|Size (pixels)|Inference Time (ms)|Precision|Compute Unit|Model Download|
|
22 |
|:----:|:----:|:----:|:----:|:----:|:----:|:----:|:----:|:----:|
|
|
|
30 |
|APLUX QCS8550|QCS8550|SNPE|YOLOv8s(cutoff)|640|9.3|INT16|NPU|[model download](https://huggingface.co/aidlux/YOLOv8/blob/main/Models/QCS8550/cutoff_yolov8s_int16_htp_snpe2.dlc)|
|
31 |
|AidBox GS865|QCS8250|SNPE|YOLOv8s(cutoff)|640|35|INT8|NPU|[model download]()|
|
32 |
|
33 |
+
**Models Conversion**
|
34 |
|
35 |
Demo models converted from [**AIMO(AI Model Optimizier)**](https://aidlux.com/en/product/aimo).
|
36 |
|
|
|
48 |
|APLUX QCS8550|QCS8550|QNN|YOLOv8s(cutoff)|640|INT16|NPU|[View Steps](https://huggingface.co/aplux/YOLOv8/blob/main/AIMO/QCS8550/aimo_yolov8s_qnn_int16.png)|
|
49 |
|APLUX QCS8550|QCS8550|SNPE|YOLOv8s(cutoff)|640|INT8|NPU|[View Steps](https://huggingface.co/aplux/YOLOv8/blob/main/AIMO/QCS8550/aimo_yolov8s_snpe_int8.png)|
|
50 |
|APLUX QCS8550|QCS8550|SNPE|YOLOv8s(cutoff)|640|INT16|NPU|[View Steps](https://huggingface.co/aplux/YOLOv8/blob/main/AIMO/QCS8550/aimo_yolov8s_snpe_int16.png)|
|
51 |
+
|AidBox GS865|QCS8250|SNPE|YOLOv8s(cutoff)|640|INT8|NPU|[View Steps]()|
|
52 |
+
|
53 |
+
## Inference
|
54 |
+
|
55 |
+
### Step1: convert model
|
56 |
+
|
57 |
+
a. Prepare source model in onnx format. The source model can be found [here](https://huggingface.co/aplux/YOLOv8/blob/main/yolov8s.onnx).
|
58 |
+
|
59 |
+
b. Login [AIMO](https://aidlux.com/en/product/aimo) and convert source model to target format. The model conversion step can follow **AIMO Conversion Step** in [Model Conversion Sheet](#model-conversion).
|
60 |
+
|
61 |
+
c. After conversion task done, download target model file.
|
62 |
+
|
63 |
+
### Step2: install AidLite SDK
|
64 |
+
|
65 |
+
The installation guide of AidLite SDK can be found [here](https://huggingface.co/datasets/aplux/AIToolKit/blob/main/AidLite%20SDK%20Development%20Documents.md#installation).
|
66 |
+
|
67 |
+
### Step3: run demo program
|