--- license: apache-2.0 ---

YOLOv8: Target Detection

YOLO algorithm is the most typical representative of one-stage target detection algorithm. It is based on deep neural network for object recognition and positioning. It runs very fast and can be used in real-time systems. YOLOv8 is currently the most advanced algorithm of the YOLO series, surpassing the previous YOLO series in terms of accuracy and speed. The model can be found [here](https://github.com/ultralytics/ultralytics) ## CONTENTS - [Performance](#performance) - [Model Conversion](#model-conversion) - [Inference](#inference) **Performance** |Device|SoC|Runtime|Model|Size (pixels)|Inference Time (ms)|Precision|Compute Unit|Model Download| |:----:|:----:|:----:|:----:|:----:|:----:|:----:|:----:|:----:| |AidBox QCS6490|QCS6490|QNN|YOLOv8s(cutoff)|640|11.1|INT8|NPU|[model download](https://huggingface.co/aidlux/YOLOv8/blob/main/Models/QCS6490/cutoff_yolov8s_int8.qnn.serialized.bin)| |AidBox QCS6490|QCS6490|QNN|YOLOv8s(cutoff)|640|24.8|INT16|NPU|[model download](https://huggingface.co/aidlux/YOLOv8/blob/main/Models/QCS6490/cutoff_yolov8s_int16.qnn.serialized.bin)| |AidBox QCS6490|QCS6490|SNPE|YOLOv8s(cutoff)|640|9.6|INT8|NPU|[model download](https://huggingface.co/aidlux/YOLOv8/blob/main/Models/QCS6490/cutoff_yolov8s_int8_htp_snpe2.dlc)| |AidBox QCS6490|QCS6490|SNPE|YOLOv8s(cutoff)|640|22.1|INT16|NPU|[model download](https://huggingface.co/aidlux/YOLOv8/blob/main/Models/QCS6490/cutoff_yolov8s_int16_htp_snpe2.dlc)| |APLUX QCS8550|QCS8550|QNN|YOLOv8s(cutoff)|640|8.7|INT8|NPU|[model download](https://huggingface.co/aidlux/YOLOv8/blob/main/Models/QCS8550/cutoff_yolov8s_int8.qnn.serialized.bin)| |APLUX QCS8550|QCS8550|QNN|YOLOv8s(cutoff)|640|20.3|INT16|NPU|[model download](https://huggingface.co/aidlux/YOLOv8/blob/main/Models/QCS8550/cutoff_yolov8s_int16.qnn.serialized.bin)| |APLUX QCS8550|QCS8550|SNPE|YOLOv8s(cutoff)|640|3.8|INT8|NPU|[model download](https://huggingface.co/aidlux/YOLOv8/blob/main/Models/QCS8550/cutoff_yolov8s_int8_htp_snpe2.dlc)| |APLUX QCS8550|QCS8550|SNPE|YOLOv8s(cutoff)|640|9.3|INT16|NPU|[model download](https://huggingface.co/aidlux/YOLOv8/blob/main/Models/QCS8550/cutoff_yolov8s_int16_htp_snpe2.dlc)| |AidBox GS865|QCS8250|SNPE|YOLOv8s(cutoff)|640|35|INT8|NPU|[model download]()| **Models Conversion** Demo models converted from [**AIMO(AI Model Optimizier)**](https://aidlux.com/en/product/aimo). The source model **YOLOv8s.onnx** can be found [here](https://huggingface.co/aplux/YOLOv8/blob/main/yolov8s.onnx). The demo model conversion step on AIMO can be found blow: |Device|SoC|Runtime|Model|Size (pixels)|Precision|Compute Unit|AIMO Conversion Steps| |:----:|:----:|:----:|:----:|:----:|:----:|:----:|:----:| |AidBox QCS6490|QCS6490|QNN|YOLOv8s(cutoff)|640|INT8|NPU|[View Steps](https://huggingface.co/aplux/YOLOv8/blob/main/AIMO/QCS6490/aimo_yolov8s_qnn_int8.png)| |AidBox QCS6490|QCS6490|QNN|YOLOv8s(cutoff)|640|INT16|NPU|[View Steps](https://huggingface.co/aplux/YOLOv8/blob/main/AIMO/QCS6490/aimo_yolov8s_qnn_int16.png)| |AidBox QCS6490|QCS6490|SNPE|YOLOv8s(cutoff)|640|INT8|NPU|[View Steps](https://huggingface.co/aplux/YOLOv8/blob/main/AIMO/QCS6490/aimo_yolov8s_snpe_int8.png)| |AidBox QCS6490|QCS6490|SNPE|YOLOv8s(cutoff)|640|INT16|NPU|[View Steps](https://huggingface.co/aplux/YOLOv8/blob/main/AIMO/QCS6490/aimo_yolov8s_snpe_int16.png)| |APLUX QCS8550|QCS8550|QNN|YOLOv8s(cutoff)|640|INT8|NPU|[View Steps](https://huggingface.co/aplux/YOLOv8/blob/main/AIMO/QCS8550/aimo_yolov8s_qnn_int8.png)| |APLUX QCS8550|QCS8550|QNN|YOLOv8s(cutoff)|640|INT16|NPU|[View Steps](https://huggingface.co/aplux/YOLOv8/blob/main/AIMO/QCS8550/aimo_yolov8s_qnn_int16.png)| |APLUX QCS8550|QCS8550|SNPE|YOLOv8s(cutoff)|640|INT8|NPU|[View Steps](https://huggingface.co/aplux/YOLOv8/blob/main/AIMO/QCS8550/aimo_yolov8s_snpe_int8.png)| |APLUX QCS8550|QCS8550|SNPE|YOLOv8s(cutoff)|640|INT16|NPU|[View Steps](https://huggingface.co/aplux/YOLOv8/blob/main/AIMO/QCS8550/aimo_yolov8s_snpe_int16.png)| |AidBox GS865|QCS8250|SNPE|YOLOv8s(cutoff)|640|INT8|NPU|[View Steps]()| ## Inference ### Step1: convert model a. Prepare source model in onnx format. The source model can be found [here](https://huggingface.co/aplux/YOLOv8/blob/main/yolov8s.onnx). b. Login [AIMO](https://aidlux.com/en/product/aimo) and convert source model to target format. The model conversion step can follow **AIMO Conversion Step** in [Model Conversion Sheet](#model-conversion). c. After conversion task done, download target model file. ### Step2: install AidLite SDK The installation guide of AidLite SDK can be found [here](https://huggingface.co/datasets/aplux/AIToolKit/blob/main/AidLite%20SDK%20Development%20Documents.md#installation). ### Step3: run demo program