Zero-Shot Image Classification
TiC-CLIP
vision
fartashf commited on
Commit
f8876ac
1 Parent(s): 38fbfcd

Add files using large-upload tool

Browse files
Files changed (6) hide show
  1. README.md +137 -0
  2. params/2017.yaml +99 -0
  3. params/2019.yaml +99 -0
  4. params/2020.yaml +99 -0
  5. params/2021.yaml +99 -0
  6. params/2022.yaml +99 -0
README.md ADDED
@@ -0,0 +1,137 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: other
3
+ license_name: custom-apple-license
4
+ license_link: https://github.com/apple/ml-tic-clip/blob/main/LICENSE
5
+ tags:
6
+ - vision
7
+ - zero-shot-image-classification
8
+ datasets:
9
+ - apple/TiC-DataComp
10
+ ---
11
+ # Model Card for Model ID
12
+
13
+ <!-- Provide a quick summary of what the model is/does. -->
14
+
15
+ This repository contains TiC-CLIP models trained on TiC-DataComp-Yearly with data from 2014 to 2022 using our modified OpenCLIP code.
16
+ For additional information refer to our [GitHub repo](https://github.com/apple/ml-tic-clip).
17
+
18
+ ## Model Details
19
+
20
+ ### Model Description
21
+
22
+ Keeping large foundation models up to date on latest data is inherently expensive.
23
+ To avoid the prohibitive costs of constantly retraining, it is imperative to continually train these models.
24
+ This problem is exacerbated by the lack of any large scale continual learning benchmarks or baselines.
25
+ We introduce the first set of web-scale Time-Continual (TiC) benchmarks for training vision-language models:
26
+ TiC-DataComp, TiC-YFCC, and TiC-Redcaps. TiC-DataComp, our largest dataset,
27
+ contains over 12.7B timestamped image-text pairs spanning 9 years (2014-2022).
28
+ We first use our benchmarks to curate various dynamic evaluations to measure temporal robustness of existing models.
29
+ We show OpenAI's CLIP (trained on data up to 2020) loses ≈8% zero-shot accuracy on our curated retrieval task from 2021-2022 compared with more recently trained models in OpenCLIP repository.
30
+ We then study how to efficiently train models on time-continuous data.
31
+ We demonstrate that a simple rehearsal-based approach that continues training from the last checkpoint and replays old data reduces compute by 2.5× when compared to the standard practice of retraining from scratch.
32
+ Code is available at [this https URL](https://github.com/apple/ml-tic-clip).
33
+
34
+
35
+
36
+ - **Developed by:** Apple
37
+ - **License:** See [LICENSE](https://github.com/apple/ml-tic-clip/blob/main/LICENSE)
38
+
39
+ ### Model Sources [optional]
40
+
41
+ <!-- Provide the basic links for the model. -->
42
+
43
+ - **Repository:** [ml-tic-clip GitHub repo](https://github.com/apple/ml-tic-clip)
44
+ - **Paper:** [TiC-CLIP: Continual Training of CLIP Models, Garg, S., Farajtabar, M., Pouransari, H., Vemulapalli, R., Mehta, S., Tuzel, O., Shankar, V. and Faghri, F., International Conference on Learning Representations (ICLR), 2024.](https://arxiv.org/abs/2310.16226)
45
+
46
+ ## Uses
47
+
48
+ Researchers can use TiC-CLIP pretrained models for faster design of continual learning methods by start from a pretrained checkpoint and continually train on the next year or next month data.
49
+
50
+ ## How to Get Started with the Model
51
+
52
+ The models are compatible with DataComp evaluation suite and our patched version of DataComp for evaluation on TiC-DataComp-Retrieval and TiC-DataCompNet.
53
+ The models can also be used to resume a training or as initialization for new training using OpenCLIP code.
54
+ Please follow instructions in our [GitHub repo](https://github.com/apple/ml-tic-clip) to create the evaluation sets or follow [DataComp](https://github.com/mlfoundations/datacomp) for the standard evaluations on 38 datasets.
55
+
56
+ ## Training Details
57
+
58
+ ### Training Data
59
+
60
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Training Procedure
65
+
66
+ Please refer to Sections 2-3 of our [TiC-CLIP](https://github.com/apple/ml-tic-clip) paper.
67
+
68
+ #### Preprocessing [optional]
69
+
70
+ [More Information Needed]
71
+
72
+
73
+ #### Training Hyperparameters
74
+
75
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
76
+
77
+ ## Evaluation
78
+
79
+ <!-- This section describes the evaluation protocols and provides the results. -->
80
+
81
+ ### Testing Data, Factors & Metrics
82
+
83
+ #### Testing Data
84
+
85
+ <!-- This should link to a Dataset Card if possible. -->
86
+
87
+ [More Information Needed]
88
+
89
+ #### Metrics
90
+
91
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
92
+
93
+ [More Information Needed]
94
+
95
+ ### Results
96
+
97
+ [More Information Needed]
98
+
99
+ #### Summary
100
+
101
+
102
+
103
+ ## Environmental Impact
104
+
105
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
106
+
107
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
108
+
109
+ - **Hardware Type:** [More Information Needed]
110
+ - **Hours used:** [More Information Needed]
111
+ - **Carbon Emitted:** [More Information Needed]
112
+
113
+ ## Technical Specifications [optional]
114
+
115
+ ### Model Architecture and Objective
116
+
117
+ [More Information Needed]
118
+
119
+ ### Compute Infrastructure
120
+
121
+ [More Information Needed]
122
+
123
+ #### Hardware
124
+
125
+ [More Information Needed]
126
+
127
+ #### Software
128
+
129
+ [More Information Needed]
130
+
131
+ ## Citation [optional]
132
+
133
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
134
+
135
+ **BibTeX:**
136
+
137
+ [More Information Needed]
params/2017.yaml ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ accum_freq: 1
2
+ aug_cfg: {}
3
+ batch_size: 1408
4
+ beta1: 0.9
5
+ beta2: 0.98
6
+ checkpoint_path: /tmp/restart_2017/datacomp_xlarge-bestpool_restart_2017/checkpoints
7
+ coca_caption_loss_weight: 2.0
8
+ coca_contrastive_loss_weight: 1.0
9
+ copy_codebase: False
10
+ csv_caption_key: title
11
+ csv_img_key: filepath
12
+ csv_separator:
13
+ dataset_resampled: True
14
+ dataset_type: webdataset
15
+ ddp_static_graph: True
16
+ debug: False
17
+ decay_fraction: 0.2
18
+ delete_previous_checkpoint: False
19
+ device: cuda:0
20
+ dist_backend: nccl
21
+ dist_url: env://
22
+ distill: False
23
+ distill_model: None
24
+ distill_pretrained: None
25
+ distributed: True
26
+ epochs: 32
27
+ epochs_cooldown: None
28
+ eps: 1e-06
29
+ force_custom_text: False
30
+ force_image_size: None
31
+ force_patch_dropout: None
32
+ force_qk_norm: False
33
+ force_qk_norm_eps: 1e-05
34
+ force_quick_gelu: False
35
+ gather_with_grad: True
36
+ grad_checkpointing: True
37
+ grad_clip_norm: None
38
+ horovod: False
39
+ image_mean: None
40
+ image_std: None
41
+ imagenet_v2: None
42
+ imagenet_val: ../imagenet_validation
43
+ is_iteration_based: True
44
+ local_loss: True
45
+ local_rank: 0
46
+ lock_image: False
47
+ lock_image_freeze_bn_stats: False
48
+ lock_image_unlocked_groups: 0
49
+ lock_text: False
50
+ lock_text_freeze_layer_norm: False
51
+ lock_text_unlocked_layers: 0
52
+ log_every_n_steps: 100
53
+ log_level: 20
54
+ log_local: False
55
+ log_path: /tmp/restart_2017/datacomp_xlarge-bestpool_restart_2017/out.log
56
+ logs: /tmp/restart_2017
57
+ lr: 0.001
58
+ lr_cooldown_end: 0.0
59
+ lr_cooldown_power: 1.0
60
+ lr_scheduler: cosine
61
+ max_iterations: 20500
62
+ model: ViT-B-16
63
+ name: datacomp_xlarge-bestpool_restart_2017
64
+ new_run: True
65
+ no_set_device_rank: False
66
+ precision: amp
67
+ pretrained:
68
+ pretrained_image: False
69
+ rank: 0
70
+ remote_sync: xlarge_CL_bestpool_filter/restart_2017/
71
+ remote_sync_frequency: 300
72
+ remote_sync_protocol: s3
73
+ report_to:
74
+ resume: xlarge_CL_bestpool_filter/cumulative_sequential_2016/datacomp_xlarge-bestpool-2023-09-12_08-24-13_cumulative_seq_2016/checkpoints/epoch_12.pt
75
+ save_frequency: 1
76
+ save_most_recent: True
77
+ seed: 0
78
+ skip_scheduler: False
79
+ tensorboard: False
80
+ tensorboard_path:
81
+ torchcompile: False
82
+ torchscript: False
83
+ trace: False
84
+ train_data: xlarge_bestpool_filter/2017/0/{00000000..00000383}.tar::xlarge_bestpool_filter/2017/1/{00000000..00000383}.tar::xlarge_bestpool_filter/2017/10/{00000000..00000319}.tar::xlarge_bestpool_filter/2017/11/{00000000..00000383}.tar::xlarge_bestpool_filter/2017/12/{00000000..00000359}.tar::xlarge_bestpool_filter/2017/13/{00000000..00000383}.tar::xlarge_bestpool_filter/2017/14/{00000000..00000383}.tar::xlarge_bestpool_filter/2017/15/{00000000..00000369}.tar::xlarge_bestpool_filter/2017/16/{00000000..00000331}.tar::xlarge_bestpool_filter/2017/17/{00000000..00000319}.tar::xlarge_bestpool_filter/2017/18/{00000000..00000383}.tar::xlarge_bestpool_filter/2017/19/{00000000..00000383}.tar::xlarge_bestpool_filter/2017/2/{00000000..00000383}.tar::xlarge_bestpool_filter/2017/20/{00000000..00000372}.tar::xlarge_bestpool_filter/2017/21/{00000000..00000319}.tar::xlarge_bestpool_filter/2017/22/{00000000..00000319}.tar::xlarge_bestpool_filter/2017/23/{00000000..00000383}.tar::xlarge_bestpool_filter/2017/24/{00000000..00000255}.tar::xlarge_bestpool_filter/2017/25/{00000000..00000255}.tar::xlarge_bestpool_filter/2017/26/{00000000..00000063}.tar::xlarge_bestpool_filter/2017/27/{00000000..00000107}.tar::xlarge_bestpool_filter/2017/28/{00000000..00000447}.tar::xlarge_bestpool_filter/2017/29/{00000000..00000447}.tar::xlarge_bestpool_filter/2017/3/{00000000..00000383}.tar::xlarge_bestpool_filter/2017/30/{00000000..00000399}.tar::xlarge_bestpool_filter/2017/31/{00000000..00000399}.tar::xlarge_bestpool_filter/2017/32/{00000000..00000399}.tar::xlarge_bestpool_filter/2017/33/{00000000..00000401}.tar::xlarge_bestpool_filter/2017/34/{00000000..00000441}.tar::xlarge_bestpool_filter/2017/35/{00000000..00000433}.tar::xlarge_bestpool_filter/2017/36/{00000000..00000447}.tar::xlarge_bestpool_filter/2017/37/{00000000..00000447}.tar::xlarge_bestpool_filter/2017/38/{00000000..00000383}.tar::xlarge_bestpool_filter/2017/39/{00000000..00000383}.tar::xlarge_bestpool_filter/2017/4/{00000000..00000383}.tar::xlarge_bestpool_filter/2017/40/{00000000..00000383}.tar::xlarge_bestpool_filter/2017/41/{00000000..00000319}.tar::xlarge_bestpool_filter/2017/42/{00000000..00000383}.tar::xlarge_bestpool_filter/2017/43/{00000000..00000383}.tar::xlarge_bestpool_filter/2017/44/{00000000..00000383}.tar::xlarge_bestpool_filter/2017/45/{00000000..00000383}.tar::xlarge_bestpool_filter/2017/46/{00000000..00000383}.tar::xlarge_bestpool_filter/2017/47/{00000000..00000383}.tar::xlarge_bestpool_filter/2017/48/{00000000..00000419}.tar::xlarge_bestpool_filter/2017/49/{00000000..00000409}.tar::xlarge_bestpool_filter/2017/5/{00000000..00000383}.tar::xlarge_bestpool_filter/2017/50/{00000000..00000447}.tar::xlarge_bestpool_filter/2017/51/{00000000..00000447}.tar::xlarge_bestpool_filter/2017/52/{00000000..00000447}.tar::xlarge_bestpool_filter/2017/53/{00000000..00000664}.tar::xlarge_bestpool_filter/2017/54/{00000000..00000639}.tar::xlarge_bestpool_filter/2017/55/{00000000..00000238}.tar::xlarge_bestpool_filter/2017/56/{00000000..00000237}.tar::xlarge_bestpool_filter/2017/57/{00000000..00000205}.tar::xlarge_bestpool_filter/2017/58/{00000000..00000191}.tar::xlarge_bestpool_filter/2017/59/{00000000..00000191}.tar::xlarge_bestpool_filter/2017/6/{00000000..00000383}.tar::xlarge_bestpool_filter/2017/7/{00000000..00000383}.tar::xlarge_bestpool_filter/2017/8/{00000000..00000383}.tar::xlarge_bestpool_filter/2017/9/{00000000..00000340}.tar
85
+ train_data_upsampling_factors: None
86
+ train_num_samples: None
87
+ use_bn_sync: False
88
+ use_bnb_linear: None
89
+ val_data: None
90
+ val_frequency: 1
91
+ val_num_samples: None
92
+ wandb: False
93
+ wandb_notes:
94
+ wandb_project_name: open-clip
95
+ warmup: 2000
96
+ wd: 0.2
97
+ workers: 4
98
+ world_size: 64
99
+ zeroshot_frequency: 1
params/2019.yaml ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ accum_freq: 1
2
+ aug_cfg: {}
3
+ batch_size: 1408
4
+ beta1: 0.9
5
+ beta2: 0.98
6
+ checkpoint_path: /tmp/restart_2019/datacomp_xlarge-bestpool_restart_2019/checkpoints
7
+ coca_caption_loss_weight: 2.0
8
+ coca_contrastive_loss_weight: 1.0
9
+ copy_codebase: False
10
+ csv_caption_key: title
11
+ csv_img_key: filepath
12
+ csv_separator:
13
+ dataset_resampled: True
14
+ dataset_type: webdataset
15
+ ddp_static_graph: True
16
+ debug: False
17
+ decay_fraction: 0.2
18
+ delete_previous_checkpoint: False
19
+ device: cuda:0
20
+ dist_backend: nccl
21
+ dist_url: env://
22
+ distill: False
23
+ distill_model: None
24
+ distill_pretrained: None
25
+ distributed: True
26
+ epochs: 32
27
+ epochs_cooldown: None
28
+ eps: 1e-06
29
+ force_custom_text: False
30
+ force_image_size: None
31
+ force_patch_dropout: None
32
+ force_qk_norm: False
33
+ force_qk_norm_eps: 1e-05
34
+ force_quick_gelu: False
35
+ gather_with_grad: True
36
+ grad_checkpointing: True
37
+ grad_clip_norm: None
38
+ horovod: False
39
+ image_mean: None
40
+ image_std: None
41
+ imagenet_v2: None
42
+ imagenet_val: ../imagenet_validation
43
+ is_iteration_based: True
44
+ local_loss: True
45
+ local_rank: 0
46
+ lock_image: False
47
+ lock_image_freeze_bn_stats: False
48
+ lock_image_unlocked_groups: 0
49
+ lock_text: False
50
+ lock_text_freeze_layer_norm: False
51
+ lock_text_unlocked_layers: 0
52
+ log_every_n_steps: 100
53
+ log_level: 20
54
+ log_local: False
55
+ log_path: /tmp/restart_2019/datacomp_xlarge-bestpool_restart_2019/out.log
56
+ logs: /tmp/restart_2019
57
+ lr: 0.001
58
+ lr_cooldown_end: 0.0
59
+ lr_cooldown_power: 1.0
60
+ lr_scheduler: cosine
61
+ max_iterations: 20500
62
+ model: ViT-B-16
63
+ name: datacomp_xlarge-bestpool_restart_2019
64
+ new_run: True
65
+ no_set_device_rank: False
66
+ precision: amp
67
+ pretrained:
68
+ pretrained_image: False
69
+ rank: 0
70
+ remote_sync: xlarge_CL_bestpool_filter/restart_2019/
71
+ remote_sync_frequency: 300
72
+ remote_sync_protocol: s3
73
+ report_to:
74
+ resume: xlarge_CL_bestpool_filter/restart_2018/datacomp_xlarge-bestpool_restart_2018/checkpoints/epoch_9.pt
75
+ save_frequency: 1
76
+ save_most_recent: True
77
+ seed: 0
78
+ skip_scheduler: False
79
+ tensorboard: False
80
+ tensorboard_path:
81
+ torchcompile: False
82
+ torchscript: False
83
+ trace: False
84
+ train_data: xlarge_bestpool_filter/2019/0/{00000000..00000383}.tar::xlarge_bestpool_filter/2019/1/{00000000..00000383}.tar::xlarge_bestpool_filter/2019/10/{00000000..00000375}.tar::xlarge_bestpool_filter/2019/11/{00000000..00000383}.tar::xlarge_bestpool_filter/2019/12/{00000000..00000383}.tar::xlarge_bestpool_filter/2019/13/{00000000..00000385}.tar::xlarge_bestpool_filter/2019/14/{00000000..00000383}.tar::xlarge_bestpool_filter/2019/15/{00000000..00000383}.tar::xlarge_bestpool_filter/2019/16/{00000000..00000383}.tar::xlarge_bestpool_filter/2019/17/{00000000..00000347}.tar::xlarge_bestpool_filter/2019/18/{00000000..00000383}.tar::xlarge_bestpool_filter/2019/19/{00000000..00000383}.tar::xlarge_bestpool_filter/2019/2/{00000000..00000399}.tar::xlarge_bestpool_filter/2019/20/{00000000..00000383}.tar::xlarge_bestpool_filter/2019/21/{00000000..00000362}.tar::xlarge_bestpool_filter/2019/22/{00000000..00000319}.tar::xlarge_bestpool_filter/2019/23/{00000000..00000399}.tar::xlarge_bestpool_filter/2019/24/{00000000..00000279}.tar::xlarge_bestpool_filter/2019/25/{00000000..00000255}.tar::xlarge_bestpool_filter/2019/26/{00000000..00000063}.tar::xlarge_bestpool_filter/2019/27/{00000000..00000107}.tar::xlarge_bestpool_filter/2019/28/{00000000..00000447}.tar::xlarge_bestpool_filter/2019/29/{00000000..00000447}.tar::xlarge_bestpool_filter/2019/3/{00000000..00000383}.tar::xlarge_bestpool_filter/2019/30/{00000000..00000447}.tar::xlarge_bestpool_filter/2019/31/{00000000..00000447}.tar::xlarge_bestpool_filter/2019/32/{00000000..00000447}.tar::xlarge_bestpool_filter/2019/33/{00000000..00000447}.tar::xlarge_bestpool_filter/2019/34/{00000000..00000447}.tar::xlarge_bestpool_filter/2019/35/{00000000..00000447}.tar::xlarge_bestpool_filter/2019/36/{00000000..00000447}.tar::xlarge_bestpool_filter/2019/37/{00000000..00000447}.tar::xlarge_bestpool_filter/2019/38/{00000000..00000412}.tar::xlarge_bestpool_filter/2019/39/{00000000..00000383}.tar::xlarge_bestpool_filter/2019/4/{00000000..00000399}.tar::xlarge_bestpool_filter/2019/40/{00000000..00000383}.tar::xlarge_bestpool_filter/2019/41/{00000000..00000383}.tar::xlarge_bestpool_filter/2019/42/{00000000..00000395}.tar::xlarge_bestpool_filter/2019/43/{00000000..00000447}.tar::xlarge_bestpool_filter/2019/44/{00000000..00000447}.tar::xlarge_bestpool_filter/2019/45/{00000000..00000442}.tar::xlarge_bestpool_filter/2019/46/{00000000..00000431}.tar::xlarge_bestpool_filter/2019/47/{00000000..00000447}.tar::xlarge_bestpool_filter/2019/48/{00000000..00000447}.tar::xlarge_bestpool_filter/2019/49/{00000000..00000447}.tar::xlarge_bestpool_filter/2019/5/{00000000..00000426}.tar::xlarge_bestpool_filter/2019/50/{00000000..00000439}.tar::xlarge_bestpool_filter/2019/51/{00000000..00000447}.tar::xlarge_bestpool_filter/2019/52/{00000000..00000447}.tar::xlarge_bestpool_filter/2019/53/{00000000..00000703}.tar::xlarge_bestpool_filter/2019/54/{00000000..00000703}.tar::xlarge_bestpool_filter/2019/55/{00000000..00000255}.tar::xlarge_bestpool_filter/2019/56/{00000000..00000255}.tar::xlarge_bestpool_filter/2019/57/{00000000..00000255}.tar::xlarge_bestpool_filter/2019/58/{00000000..00000234}.tar::xlarge_bestpool_filter/2019/59/{00000000..00000247}.tar::xlarge_bestpool_filter/2019/6/{00000000..00000410}.tar::xlarge_bestpool_filter/2019/7/{00000000..00000436}.tar::xlarge_bestpool_filter/2019/8/{00000000..00000383}.tar::xlarge_bestpool_filter/2019/9/{00000000..00000383}.tar
85
+ train_data_upsampling_factors: None
86
+ train_num_samples: None
87
+ use_bn_sync: False
88
+ use_bnb_linear: None
89
+ val_data: None
90
+ val_frequency: 1
91
+ val_num_samples: None
92
+ wandb: False
93
+ wandb_notes:
94
+ wandb_project_name: open-clip
95
+ warmup: 2000
96
+ wd: 0.2
97
+ workers: 4
98
+ world_size: 64
99
+ zeroshot_frequency: 1
params/2020.yaml ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ accum_freq: 1
2
+ aug_cfg: {}
3
+ batch_size: 1408
4
+ beta1: 0.9
5
+ beta2: 0.98
6
+ checkpoint_path: /tmp/restart_2020/datacomp_xlarge-bestpool_restart_2020/checkpoints
7
+ coca_caption_loss_weight: 2.0
8
+ coca_contrastive_loss_weight: 1.0
9
+ copy_codebase: False
10
+ csv_caption_key: title
11
+ csv_img_key: filepath
12
+ csv_separator:
13
+ dataset_resampled: True
14
+ dataset_type: webdataset
15
+ ddp_static_graph: True
16
+ debug: False
17
+ decay_fraction: 0.2
18
+ delete_previous_checkpoint: False
19
+ device: cuda:0
20
+ dist_backend: nccl
21
+ dist_url: env://
22
+ distill: False
23
+ distill_model: None
24
+ distill_pretrained: None
25
+ distributed: True
26
+ epochs: 32
27
+ epochs_cooldown: None
28
+ eps: 1e-06
29
+ force_custom_text: False
30
+ force_image_size: None
31
+ force_patch_dropout: None
32
+ force_qk_norm: False
33
+ force_qk_norm_eps: 1e-05
34
+ force_quick_gelu: False
35
+ gather_with_grad: True
36
+ grad_checkpointing: True
37
+ grad_clip_norm: None
38
+ horovod: False
39
+ image_mean: None
40
+ image_std: None
41
+ imagenet_v2: None
42
+ imagenet_val: ../imagenet_validation
43
+ is_iteration_based: True
44
+ local_loss: True
45
+ local_rank: 0
46
+ lock_image: False
47
+ lock_image_freeze_bn_stats: False
48
+ lock_image_unlocked_groups: 0
49
+ lock_text: False
50
+ lock_text_freeze_layer_norm: False
51
+ lock_text_unlocked_layers: 0
52
+ log_every_n_steps: 100
53
+ log_level: 20
54
+ log_local: False
55
+ log_path: /tmp/restart_2020/datacomp_xlarge-bestpool_restart_2020/out.log
56
+ logs: /tmp/restart_2020
57
+ lr: 0.001
58
+ lr_cooldown_end: 0.0
59
+ lr_cooldown_power: 1.0
60
+ lr_scheduler: cosine
61
+ max_iterations: 20500
62
+ model: ViT-B-16
63
+ name: datacomp_xlarge-bestpool_restart_2020
64
+ new_run: True
65
+ no_set_device_rank: False
66
+ precision: amp
67
+ pretrained:
68
+ pretrained_image: False
69
+ rank: 0
70
+ remote_sync: xlarge_CL_bestpool_filter/restart_2020/
71
+ remote_sync_frequency: 300
72
+ remote_sync_protocol: s3
73
+ report_to:
74
+ resume: xlarge_CL_bestpool_filter/restart_2019/datacomp_xlarge-bestpool_restart_2019/checkpoints/epoch_9.pt
75
+ save_frequency: 1
76
+ save_most_recent: True
77
+ seed: 0
78
+ skip_scheduler: False
79
+ tensorboard: False
80
+ tensorboard_path:
81
+ torchcompile: False
82
+ torchscript: False
83
+ trace: False
84
+ train_data: xlarge_bestpool_filter/2020/0/{00000000..00000319}.tar::xlarge_bestpool_filter/2020/1/{00000000..00000319}.tar::xlarge_bestpool_filter/2020/10/{00000000..00000278}.tar::xlarge_bestpool_filter/2020/11/{00000000..00000319}.tar::xlarge_bestpool_filter/2020/12/{00000000..00000319}.tar::xlarge_bestpool_filter/2020/13/{00000000..00000319}.tar::xlarge_bestpool_filter/2020/14/{00000000..00000319}.tar::xlarge_bestpool_filter/2020/15/{00000000..00000319}.tar::xlarge_bestpool_filter/2020/16/{00000000..00000286}.tar::xlarge_bestpool_filter/2020/17/{00000000..00000266}.tar::xlarge_bestpool_filter/2020/18/{00000000..00000319}.tar::xlarge_bestpool_filter/2020/19/{00000000..00000319}.tar::xlarge_bestpool_filter/2020/2/{00000000..00000319}.tar::xlarge_bestpool_filter/2020/20/{00000000..00000318}.tar::xlarge_bestpool_filter/2020/21/{00000000..00000273}.tar::xlarge_bestpool_filter/2020/22/{00000000..00000255}.tar::xlarge_bestpool_filter/2020/23/{00000000..00000319}.tar::xlarge_bestpool_filter/2020/24/{00000000..00000253}.tar::xlarge_bestpool_filter/2020/25/{00000000..00000232}.tar::xlarge_bestpool_filter/2020/26/{00000000..00000063}.tar::xlarge_bestpool_filter/2020/27/{00000000..00000063}.tar::xlarge_bestpool_filter/2020/28/{00000000..00000383}.tar::xlarge_bestpool_filter/2020/29/{00000000..00000383}.tar::xlarge_bestpool_filter/2020/3/{00000000..00000319}.tar::xlarge_bestpool_filter/2020/30/{00000000..00000329}.tar::xlarge_bestpool_filter/2020/31/{00000000..00000324}.tar::xlarge_bestpool_filter/2020/32/{00000000..00000323}.tar::xlarge_bestpool_filter/2020/33/{00000000..00000357}.tar::xlarge_bestpool_filter/2020/34/{00000000..00000319}.tar::xlarge_bestpool_filter/2020/35/{00000000..00000319}.tar::xlarge_bestpool_filter/2020/36/{00000000..00000377}.tar::xlarge_bestpool_filter/2020/37/{00000000..00000381}.tar::xlarge_bestpool_filter/2020/38/{00000000..00000319}.tar::xlarge_bestpool_filter/2020/39/{00000000..00000318}.tar::xlarge_bestpool_filter/2020/4/{00000000..00000319}.tar::xlarge_bestpool_filter/2020/40/{00000000..00000319}.tar::xlarge_bestpool_filter/2020/41/{00000000..00000257}.tar::xlarge_bestpool_filter/2020/42/{00000000..00000319}.tar::xlarge_bestpool_filter/2020/43/{00000000..00000319}.tar::xlarge_bestpool_filter/2020/44/{00000000..00000319}.tar::xlarge_bestpool_filter/2020/45/{00000000..00000319}.tar::xlarge_bestpool_filter/2020/46/{00000000..00000319}.tar::xlarge_bestpool_filter/2020/47/{00000000..00000319}.tar::xlarge_bestpool_filter/2020/48/{00000000..00000383}.tar::xlarge_bestpool_filter/2020/49/{00000000..00000383}.tar::xlarge_bestpool_filter/2020/5/{00000000..00000319}.tar::xlarge_bestpool_filter/2020/50/{00000000..00000383}.tar::xlarge_bestpool_filter/2020/51/{00000000..00000383}.tar::xlarge_bestpool_filter/2020/52/{00000000..00000377}.tar::xlarge_bestpool_filter/2020/53/{00000000..00000545}.tar::xlarge_bestpool_filter/2020/54/{00000000..00000511}.tar::xlarge_bestpool_filter/2020/55/{00000000..00000191}.tar::xlarge_bestpool_filter/2020/56/{00000000..00000191}.tar::xlarge_bestpool_filter/2020/57/{00000000..00000191}.tar::xlarge_bestpool_filter/2020/58/{00000000..00000191}.tar::xlarge_bestpool_filter/2020/59/{00000000..00000191}.tar::xlarge_bestpool_filter/2020/6/{00000000..00000319}.tar::xlarge_bestpool_filter/2020/7/{00000000..00000319}.tar::xlarge_bestpool_filter/2020/8/{00000000..00000319}.tar::xlarge_bestpool_filter/2020/9/{00000000..00000299}.tar
85
+ train_data_upsampling_factors: None
86
+ train_num_samples: None
87
+ use_bn_sync: False
88
+ use_bnb_linear: None
89
+ val_data: None
90
+ val_frequency: 1
91
+ val_num_samples: None
92
+ wandb: False
93
+ wandb_notes:
94
+ wandb_project_name: open-clip
95
+ warmup: 2000
96
+ wd: 0.2
97
+ workers: 4
98
+ world_size: 64
99
+ zeroshot_frequency: 1
params/2021.yaml ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ accum_freq: 1
2
+ aug_cfg: {}
3
+ batch_size: 1408
4
+ beta1: 0.9
5
+ beta2: 0.98
6
+ checkpoint_path: /tmp/restart_2021/datacomp_xlarge-bestpool_restart_2021/checkpoints
7
+ coca_caption_loss_weight: 2.0
8
+ coca_contrastive_loss_weight: 1.0
9
+ copy_codebase: False
10
+ csv_caption_key: title
11
+ csv_img_key: filepath
12
+ csv_separator:
13
+ dataset_resampled: True
14
+ dataset_type: webdataset
15
+ ddp_static_graph: True
16
+ debug: False
17
+ decay_fraction: 0.2
18
+ delete_previous_checkpoint: False
19
+ device: cuda:0
20
+ dist_backend: nccl
21
+ dist_url: env://
22
+ distill: False
23
+ distill_model: None
24
+ distill_pretrained: None
25
+ distributed: True
26
+ epochs: 32
27
+ epochs_cooldown: None
28
+ eps: 1e-06
29
+ force_custom_text: False
30
+ force_image_size: None
31
+ force_patch_dropout: None
32
+ force_qk_norm: False
33
+ force_qk_norm_eps: 1e-05
34
+ force_quick_gelu: False
35
+ gather_with_grad: True
36
+ grad_checkpointing: True
37
+ grad_clip_norm: None
38
+ horovod: False
39
+ image_mean: None
40
+ image_std: None
41
+ imagenet_v2: None
42
+ imagenet_val: ../imagenet_validation
43
+ is_iteration_based: True
44
+ local_loss: True
45
+ local_rank: 0
46
+ lock_image: False
47
+ lock_image_freeze_bn_stats: False
48
+ lock_image_unlocked_groups: 0
49
+ lock_text: False
50
+ lock_text_freeze_layer_norm: False
51
+ lock_text_unlocked_layers: 0
52
+ log_every_n_steps: 100
53
+ log_level: 20
54
+ log_local: False
55
+ log_path: /tmp/restart_2021/datacomp_xlarge-bestpool_restart_2021/out.log
56
+ logs: /tmp/restart_2021
57
+ lr: 0.001
58
+ lr_cooldown_end: 0.0
59
+ lr_cooldown_power: 1.0
60
+ lr_scheduler: cosine
61
+ max_iterations: 20500
62
+ model: ViT-B-16
63
+ name: datacomp_xlarge-bestpool_restart_2021
64
+ new_run: True
65
+ no_set_device_rank: False
66
+ precision: amp
67
+ pretrained:
68
+ pretrained_image: False
69
+ rank: 0
70
+ remote_sync: xlarge_CL_bestpool_filter/restart_2021/
71
+ remote_sync_frequency: 300
72
+ remote_sync_protocol: s3
73
+ report_to:
74
+ resume: xlarge_CL_bestpool_filter/restart_2020/datacomp_xlarge-bestpool_restart_2020/checkpoints/epoch_12.pt
75
+ save_frequency: 1
76
+ save_most_recent: True
77
+ seed: 0
78
+ skip_scheduler: False
79
+ tensorboard: False
80
+ tensorboard_path:
81
+ torchcompile: False
82
+ torchscript: False
83
+ trace: False
84
+ train_data: xlarge_bestpool_filter/2021/0/{00000000..00000320}.tar::xlarge_bestpool_filter/2021/1/{00000000..00000321}.tar::xlarge_bestpool_filter/2021/10/{00000000..00000319}.tar::xlarge_bestpool_filter/2021/11/{00000000..00000321}.tar::xlarge_bestpool_filter/2021/12/{00000000..00000326}.tar::xlarge_bestpool_filter/2021/13/{00000000..00000383}.tar::xlarge_bestpool_filter/2021/14/{00000000..00000363}.tar::xlarge_bestpool_filter/2021/15/{00000000..00000319}.tar::xlarge_bestpool_filter/2021/16/{00000000..00000319}.tar::xlarge_bestpool_filter/2021/17/{00000000..00000319}.tar::xlarge_bestpool_filter/2021/18/{00000000..00000383}.tar::xlarge_bestpool_filter/2021/19/{00000000..00000334}.tar::xlarge_bestpool_filter/2021/2/{00000000..00000382}.tar::xlarge_bestpool_filter/2021/20/{00000000..00000319}.tar::xlarge_bestpool_filter/2021/21/{00000000..00000319}.tar::xlarge_bestpool_filter/2021/22/{00000000..00000319}.tar::xlarge_bestpool_filter/2021/23/{00000000..00000383}.tar::xlarge_bestpool_filter/2021/24/{00000000..00000255}.tar::xlarge_bestpool_filter/2021/25/{00000000..00000255}.tar::xlarge_bestpool_filter/2021/26/{00000000..00000063}.tar::xlarge_bestpool_filter/2021/27/{00000000..00000063}.tar::xlarge_bestpool_filter/2021/28/{00000000..00000383}.tar::xlarge_bestpool_filter/2021/29/{00000000..00000383}.tar::xlarge_bestpool_filter/2021/3/{00000000..00000380}.tar::xlarge_bestpool_filter/2021/30/{00000000..00000383}.tar::xlarge_bestpool_filter/2021/31/{00000000..00000383}.tar::xlarge_bestpool_filter/2021/32/{00000000..00000383}.tar::xlarge_bestpool_filter/2021/33/{00000000..00000383}.tar::xlarge_bestpool_filter/2021/34/{00000000..00000383}.tar::xlarge_bestpool_filter/2021/35/{00000000..00000383}.tar::xlarge_bestpool_filter/2021/36/{00000000..00000383}.tar::xlarge_bestpool_filter/2021/37/{00000000..00000383}.tar::xlarge_bestpool_filter/2021/38/{00000000..00000383}.tar::xlarge_bestpool_filter/2021/39/{00000000..00000373}.tar::xlarge_bestpool_filter/2021/4/{00000000..00000356}.tar::xlarge_bestpool_filter/2021/40/{00000000..00000357}.tar::xlarge_bestpool_filter/2021/41/{00000000..00000319}.tar::xlarge_bestpool_filter/2021/42/{00000000..00000383}.tar::xlarge_bestpool_filter/2021/43/{00000000..00000383}.tar::xlarge_bestpool_filter/2021/44/{00000000..00000383}.tar::xlarge_bestpool_filter/2021/45/{00000000..00000383}.tar::xlarge_bestpool_filter/2021/46/{00000000..00000383}.tar::xlarge_bestpool_filter/2021/47/{00000000..00000383}.tar::xlarge_bestpool_filter/2021/48/{00000000..00000383}.tar::xlarge_bestpool_filter/2021/49/{00000000..00000383}.tar::xlarge_bestpool_filter/2021/5/{00000000..00000382}.tar::xlarge_bestpool_filter/2021/50/{00000000..00000383}.tar::xlarge_bestpool_filter/2021/51/{00000000..00000383}.tar::xlarge_bestpool_filter/2021/52/{00000000..00000383}.tar::xlarge_bestpool_filter/2021/53/{00000000..00000639}.tar::xlarge_bestpool_filter/2021/54/{00000000..00000599}.tar::xlarge_bestpool_filter/2021/55/{00000000..00000191}.tar::xlarge_bestpool_filter/2021/56/{00000000..00000191}.tar::xlarge_bestpool_filter/2021/57/{00000000..00000191}.tar::xlarge_bestpool_filter/2021/58/{00000000..00000191}.tar::xlarge_bestpool_filter/2021/59/{00000000..00000191}.tar::xlarge_bestpool_filter/2021/6/{00000000..00000383}.tar::xlarge_bestpool_filter/2021/7/{00000000..00000383}.tar::xlarge_bestpool_filter/2021/8/{00000000..00000383}.tar::xlarge_bestpool_filter/2021/9/{00000000..00000319}.tar
85
+ train_data_upsampling_factors: None
86
+ train_num_samples: None
87
+ use_bn_sync: False
88
+ use_bnb_linear: None
89
+ val_data: None
90
+ val_frequency: 1
91
+ val_num_samples: None
92
+ wandb: False
93
+ wandb_notes:
94
+ wandb_project_name: open-clip
95
+ warmup: 2000
96
+ wd: 0.2
97
+ workers: 4
98
+ world_size: 64
99
+ zeroshot_frequency: 1
params/2022.yaml ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ accum_freq: 1
2
+ aug_cfg: {}
3
+ batch_size: 1408
4
+ beta1: 0.9
5
+ beta2: 0.98
6
+ checkpoint_path: /tmp/restart_2022/datacomp_xlarge-bestpool_restart_2022/checkpoints
7
+ coca_caption_loss_weight: 2.0
8
+ coca_contrastive_loss_weight: 1.0
9
+ copy_codebase: False
10
+ csv_caption_key: title
11
+ csv_img_key: filepath
12
+ csv_separator:
13
+ dataset_resampled: True
14
+ dataset_type: webdataset
15
+ ddp_static_graph: True
16
+ debug: False
17
+ decay_fraction: 0.2
18
+ delete_previous_checkpoint: False
19
+ device: cuda:0
20
+ dist_backend: nccl
21
+ dist_url: env://
22
+ distill: False
23
+ distill_model: None
24
+ distill_pretrained: None
25
+ distributed: True
26
+ epochs: 32
27
+ epochs_cooldown: None
28
+ eps: 1e-06
29
+ force_custom_text: False
30
+ force_image_size: None
31
+ force_patch_dropout: None
32
+ force_qk_norm: False
33
+ force_qk_norm_eps: 1e-05
34
+ force_quick_gelu: False
35
+ gather_with_grad: True
36
+ grad_checkpointing: True
37
+ grad_clip_norm: None
38
+ horovod: False
39
+ image_mean: None
40
+ image_std: None
41
+ imagenet_v2: None
42
+ imagenet_val: ../imagenet_validation
43
+ is_iteration_based: True
44
+ local_loss: True
45
+ local_rank: 0
46
+ lock_image: False
47
+ lock_image_freeze_bn_stats: False
48
+ lock_image_unlocked_groups: 0
49
+ lock_text: False
50
+ lock_text_freeze_layer_norm: False
51
+ lock_text_unlocked_layers: 0
52
+ log_every_n_steps: 100
53
+ log_level: 20
54
+ log_local: False
55
+ log_path: /tmp/restart_2022/datacomp_xlarge-bestpool_restart_2022/out.log
56
+ logs: /tmp/restart_2022
57
+ lr: 0.001
58
+ lr_cooldown_end: 0.0
59
+ lr_cooldown_power: 1.0
60
+ lr_scheduler: cosine
61
+ max_iterations: 20500
62
+ model: ViT-B-16
63
+ name: datacomp_xlarge-bestpool_restart_2022
64
+ new_run: True
65
+ no_set_device_rank: False
66
+ precision: amp
67
+ pretrained:
68
+ pretrained_image: False
69
+ rank: 0
70
+ remote_sync: xlarge_CL_bestpool_filter/restart_2022/
71
+ remote_sync_frequency: 300
72
+ remote_sync_protocol: s3
73
+ report_to:
74
+ resume: xlarge_CL_bestpool_filter/restart_2021/datacomp_xlarge-bestpool_restart_2021/checkpoints/epoch_10.pt
75
+ save_frequency: 1
76
+ save_most_recent: True
77
+ seed: 0
78
+ skip_scheduler: False
79
+ tensorboard: False
80
+ tensorboard_path:
81
+ torchcompile: False
82
+ torchscript: False
83
+ trace: False
84
+ train_data: xlarge_bestpool_filter/2022/0/{00000000..00000255}.tar::xlarge_bestpool_filter/2022/1/{00000000..00000255}.tar::xlarge_bestpool_filter/2022/10/{00000000..00000255}.tar::xlarge_bestpool_filter/2022/11/{00000000..00000255}.tar::xlarge_bestpool_filter/2022/12/{00000000..00000255}.tar::xlarge_bestpool_filter/2022/13/{00000000..00000257}.tar::xlarge_bestpool_filter/2022/14/{00000000..00000255}.tar::xlarge_bestpool_filter/2022/15/{00000000..00000255}.tar::xlarge_bestpool_filter/2022/16/{00000000..00000255}.tar::xlarge_bestpool_filter/2022/17/{00000000..00000255}.tar::xlarge_bestpool_filter/2022/18/{00000000..00000255}.tar::xlarge_bestpool_filter/2022/19/{00000000..00000255}.tar::xlarge_bestpool_filter/2022/2/{00000000..00000255}.tar::xlarge_bestpool_filter/2022/20/{00000000..00000255}.tar::xlarge_bestpool_filter/2022/21/{00000000..00000255}.tar::xlarge_bestpool_filter/2022/22/{00000000..00000255}.tar::xlarge_bestpool_filter/2022/23/{00000000..00000289}.tar::xlarge_bestpool_filter/2022/24/{00000000..00000191}.tar::xlarge_bestpool_filter/2022/25/{00000000..00000191}.tar::xlarge_bestpool_filter/2022/26/{00000000..00000063}.tar::xlarge_bestpool_filter/2022/27/{00000000..00000063}.tar::xlarge_bestpool_filter/2022/28/{00000000..00000319}.tar::xlarge_bestpool_filter/2022/29/{00000000..00000319}.tar::xlarge_bestpool_filter/2022/3/{00000000..00000255}.tar::xlarge_bestpool_filter/2022/30/{00000000..00000319}.tar::xlarge_bestpool_filter/2022/31/{00000000..00000319}.tar::xlarge_bestpool_filter/2022/32/{00000000..00000319}.tar::xlarge_bestpool_filter/2022/33/{00000000..00000319}.tar::xlarge_bestpool_filter/2022/34/{00000000..00000319}.tar::xlarge_bestpool_filter/2022/35/{00000000..00000319}.tar::xlarge_bestpool_filter/2022/36/{00000000..00000319}.tar::xlarge_bestpool_filter/2022/37/{00000000..00000319}.tar::xlarge_bestpool_filter/2022/38/{00000000..00000255}.tar::xlarge_bestpool_filter/2022/39/{00000000..00000255}.tar::xlarge_bestpool_filter/2022/4/{00000000..00000255}.tar::xlarge_bestpool_filter/2022/40/{00000000..00000255}.tar::xlarge_bestpool_filter/2022/41/{00000000..00000255}.tar::xlarge_bestpool_filter/2022/42/{00000000..00000255}.tar::xlarge_bestpool_filter/2022/43/{00000000..00000303}.tar::xlarge_bestpool_filter/2022/44/{00000000..00000306}.tar::xlarge_bestpool_filter/2022/45/{00000000..00000258}.tar::xlarge_bestpool_filter/2022/46/{00000000..00000259}.tar::xlarge_bestpool_filter/2022/47/{00000000..00000276}.tar::xlarge_bestpool_filter/2022/48/{00000000..00000319}.tar::xlarge_bestpool_filter/2022/49/{00000000..00000319}.tar::xlarge_bestpool_filter/2022/5/{00000000..00000255}.tar::xlarge_bestpool_filter/2022/50/{00000000..00000319}.tar::xlarge_bestpool_filter/2022/51/{00000000..00000319}.tar::xlarge_bestpool_filter/2022/52/{00000000..00000319}.tar::xlarge_bestpool_filter/2022/53/{00000000..00000447}.tar::xlarge_bestpool_filter/2022/54/{00000000..00000447}.tar::xlarge_bestpool_filter/2022/55/{00000000..00000189}.tar::xlarge_bestpool_filter/2022/56/{00000000..00000188}.tar::xlarge_bestpool_filter/2022/57/{00000000..00000184}.tar::xlarge_bestpool_filter/2022/58/{00000000..00000163}.tar::xlarge_bestpool_filter/2022/59/{00000000..00000176}.tar::xlarge_bestpool_filter/2022/6/{00000000..00000255}.tar::xlarge_bestpool_filter/2022/7/{00000000..00000310}.tar::xlarge_bestpool_filter/2022/8/{00000000..00000255}.tar::xlarge_bestpool_filter/2022/9/{00000000..00000255}.tar
85
+ train_data_upsampling_factors: None
86
+ train_num_samples: None
87
+ use_bn_sync: False
88
+ use_bnb_linear: None
89
+ val_data: None
90
+ val_frequency: 1
91
+ val_num_samples: None
92
+ wandb: False
93
+ wandb_notes:
94
+ wandb_project_name: open-clip
95
+ warmup: 2000
96
+ wd: 0.2
97
+ workers: 4
98
+ world_size: 64
99
+ zeroshot_frequency: 1