Add files using large-upload tool
Browse files- README.md +137 -0
- params/2017.yaml +99 -0
- params/2019.yaml +99 -0
- params/2020.yaml +99 -0
- params/2021.yaml +99 -0
- params/2022.yaml +99 -0
README.md
ADDED
@@ -0,0 +1,137 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: other
|
3 |
+
license_name: custom-apple-license
|
4 |
+
license_link: https://github.com/apple/ml-tic-clip/blob/main/LICENSE
|
5 |
+
tags:
|
6 |
+
- vision
|
7 |
+
- zero-shot-image-classification
|
8 |
+
datasets:
|
9 |
+
- apple/TiC-DataComp
|
10 |
+
---
|
11 |
+
# Model Card for Model ID
|
12 |
+
|
13 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
14 |
+
|
15 |
+
This repository contains TiC-CLIP models trained on TiC-DataComp-Yearly with data from 2014 to 2022 using our modified OpenCLIP code.
|
16 |
+
For additional information refer to our [GitHub repo](https://github.com/apple/ml-tic-clip).
|
17 |
+
|
18 |
+
## Model Details
|
19 |
+
|
20 |
+
### Model Description
|
21 |
+
|
22 |
+
Keeping large foundation models up to date on latest data is inherently expensive.
|
23 |
+
To avoid the prohibitive costs of constantly retraining, it is imperative to continually train these models.
|
24 |
+
This problem is exacerbated by the lack of any large scale continual learning benchmarks or baselines.
|
25 |
+
We introduce the first set of web-scale Time-Continual (TiC) benchmarks for training vision-language models:
|
26 |
+
TiC-DataComp, TiC-YFCC, and TiC-Redcaps. TiC-DataComp, our largest dataset,
|
27 |
+
contains over 12.7B timestamped image-text pairs spanning 9 years (2014-2022).
|
28 |
+
We first use our benchmarks to curate various dynamic evaluations to measure temporal robustness of existing models.
|
29 |
+
We show OpenAI's CLIP (trained on data up to 2020) loses ≈8% zero-shot accuracy on our curated retrieval task from 2021-2022 compared with more recently trained models in OpenCLIP repository.
|
30 |
+
We then study how to efficiently train models on time-continuous data.
|
31 |
+
We demonstrate that a simple rehearsal-based approach that continues training from the last checkpoint and replays old data reduces compute by 2.5× when compared to the standard practice of retraining from scratch.
|
32 |
+
Code is available at [this https URL](https://github.com/apple/ml-tic-clip).
|
33 |
+
|
34 |
+
|
35 |
+
|
36 |
+
- **Developed by:** Apple
|
37 |
+
- **License:** See [LICENSE](https://github.com/apple/ml-tic-clip/blob/main/LICENSE)
|
38 |
+
|
39 |
+
### Model Sources [optional]
|
40 |
+
|
41 |
+
<!-- Provide the basic links for the model. -->
|
42 |
+
|
43 |
+
- **Repository:** [ml-tic-clip GitHub repo](https://github.com/apple/ml-tic-clip)
|
44 |
+
- **Paper:** [TiC-CLIP: Continual Training of CLIP Models, Garg, S., Farajtabar, M., Pouransari, H., Vemulapalli, R., Mehta, S., Tuzel, O., Shankar, V. and Faghri, F., International Conference on Learning Representations (ICLR), 2024.](https://arxiv.org/abs/2310.16226)
|
45 |
+
|
46 |
+
## Uses
|
47 |
+
|
48 |
+
Researchers can use TiC-CLIP pretrained models for faster design of continual learning methods by start from a pretrained checkpoint and continually train on the next year or next month data.
|
49 |
+
|
50 |
+
## How to Get Started with the Model
|
51 |
+
|
52 |
+
The models are compatible with DataComp evaluation suite and our patched version of DataComp for evaluation on TiC-DataComp-Retrieval and TiC-DataCompNet.
|
53 |
+
The models can also be used to resume a training or as initialization for new training using OpenCLIP code.
|
54 |
+
Please follow instructions in our [GitHub repo](https://github.com/apple/ml-tic-clip) to create the evaluation sets or follow [DataComp](https://github.com/mlfoundations/datacomp) for the standard evaluations on 38 datasets.
|
55 |
+
|
56 |
+
## Training Details
|
57 |
+
|
58 |
+
### Training Data
|
59 |
+
|
60 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
61 |
+
|
62 |
+
[More Information Needed]
|
63 |
+
|
64 |
+
### Training Procedure
|
65 |
+
|
66 |
+
Please refer to Sections 2-3 of our [TiC-CLIP](https://github.com/apple/ml-tic-clip) paper.
|
67 |
+
|
68 |
+
#### Preprocessing [optional]
|
69 |
+
|
70 |
+
[More Information Needed]
|
71 |
+
|
72 |
+
|
73 |
+
#### Training Hyperparameters
|
74 |
+
|
75 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
76 |
+
|
77 |
+
## Evaluation
|
78 |
+
|
79 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
80 |
+
|
81 |
+
### Testing Data, Factors & Metrics
|
82 |
+
|
83 |
+
#### Testing Data
|
84 |
+
|
85 |
+
<!-- This should link to a Dataset Card if possible. -->
|
86 |
+
|
87 |
+
[More Information Needed]
|
88 |
+
|
89 |
+
#### Metrics
|
90 |
+
|
91 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
92 |
+
|
93 |
+
[More Information Needed]
|
94 |
+
|
95 |
+
### Results
|
96 |
+
|
97 |
+
[More Information Needed]
|
98 |
+
|
99 |
+
#### Summary
|
100 |
+
|
101 |
+
|
102 |
+
|
103 |
+
## Environmental Impact
|
104 |
+
|
105 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
106 |
+
|
107 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
108 |
+
|
109 |
+
- **Hardware Type:** [More Information Needed]
|
110 |
+
- **Hours used:** [More Information Needed]
|
111 |
+
- **Carbon Emitted:** [More Information Needed]
|
112 |
+
|
113 |
+
## Technical Specifications [optional]
|
114 |
+
|
115 |
+
### Model Architecture and Objective
|
116 |
+
|
117 |
+
[More Information Needed]
|
118 |
+
|
119 |
+
### Compute Infrastructure
|
120 |
+
|
121 |
+
[More Information Needed]
|
122 |
+
|
123 |
+
#### Hardware
|
124 |
+
|
125 |
+
[More Information Needed]
|
126 |
+
|
127 |
+
#### Software
|
128 |
+
|
129 |
+
[More Information Needed]
|
130 |
+
|
131 |
+
## Citation [optional]
|
132 |
+
|
133 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
134 |
+
|
135 |
+
**BibTeX:**
|
136 |
+
|
137 |
+
[More Information Needed]
|
params/2017.yaml
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
accum_freq: 1
|
2 |
+
aug_cfg: {}
|
3 |
+
batch_size: 1408
|
4 |
+
beta1: 0.9
|
5 |
+
beta2: 0.98
|
6 |
+
checkpoint_path: /tmp/restart_2017/datacomp_xlarge-bestpool_restart_2017/checkpoints
|
7 |
+
coca_caption_loss_weight: 2.0
|
8 |
+
coca_contrastive_loss_weight: 1.0
|
9 |
+
copy_codebase: False
|
10 |
+
csv_caption_key: title
|
11 |
+
csv_img_key: filepath
|
12 |
+
csv_separator:
|
13 |
+
dataset_resampled: True
|
14 |
+
dataset_type: webdataset
|
15 |
+
ddp_static_graph: True
|
16 |
+
debug: False
|
17 |
+
decay_fraction: 0.2
|
18 |
+
delete_previous_checkpoint: False
|
19 |
+
device: cuda:0
|
20 |
+
dist_backend: nccl
|
21 |
+
dist_url: env://
|
22 |
+
distill: False
|
23 |
+
distill_model: None
|
24 |
+
distill_pretrained: None
|
25 |
+
distributed: True
|
26 |
+
epochs: 32
|
27 |
+
epochs_cooldown: None
|
28 |
+
eps: 1e-06
|
29 |
+
force_custom_text: False
|
30 |
+
force_image_size: None
|
31 |
+
force_patch_dropout: None
|
32 |
+
force_qk_norm: False
|
33 |
+
force_qk_norm_eps: 1e-05
|
34 |
+
force_quick_gelu: False
|
35 |
+
gather_with_grad: True
|
36 |
+
grad_checkpointing: True
|
37 |
+
grad_clip_norm: None
|
38 |
+
horovod: False
|
39 |
+
image_mean: None
|
40 |
+
image_std: None
|
41 |
+
imagenet_v2: None
|
42 |
+
imagenet_val: ../imagenet_validation
|
43 |
+
is_iteration_based: True
|
44 |
+
local_loss: True
|
45 |
+
local_rank: 0
|
46 |
+
lock_image: False
|
47 |
+
lock_image_freeze_bn_stats: False
|
48 |
+
lock_image_unlocked_groups: 0
|
49 |
+
lock_text: False
|
50 |
+
lock_text_freeze_layer_norm: False
|
51 |
+
lock_text_unlocked_layers: 0
|
52 |
+
log_every_n_steps: 100
|
53 |
+
log_level: 20
|
54 |
+
log_local: False
|
55 |
+
log_path: /tmp/restart_2017/datacomp_xlarge-bestpool_restart_2017/out.log
|
56 |
+
logs: /tmp/restart_2017
|
57 |
+
lr: 0.001
|
58 |
+
lr_cooldown_end: 0.0
|
59 |
+
lr_cooldown_power: 1.0
|
60 |
+
lr_scheduler: cosine
|
61 |
+
max_iterations: 20500
|
62 |
+
model: ViT-B-16
|
63 |
+
name: datacomp_xlarge-bestpool_restart_2017
|
64 |
+
new_run: True
|
65 |
+
no_set_device_rank: False
|
66 |
+
precision: amp
|
67 |
+
pretrained:
|
68 |
+
pretrained_image: False
|
69 |
+
rank: 0
|
70 |
+
remote_sync: xlarge_CL_bestpool_filter/restart_2017/
|
71 |
+
remote_sync_frequency: 300
|
72 |
+
remote_sync_protocol: s3
|
73 |
+
report_to:
|
74 |
+
resume: xlarge_CL_bestpool_filter/cumulative_sequential_2016/datacomp_xlarge-bestpool-2023-09-12_08-24-13_cumulative_seq_2016/checkpoints/epoch_12.pt
|
75 |
+
save_frequency: 1
|
76 |
+
save_most_recent: True
|
77 |
+
seed: 0
|
78 |
+
skip_scheduler: False
|
79 |
+
tensorboard: False
|
80 |
+
tensorboard_path:
|
81 |
+
torchcompile: False
|
82 |
+
torchscript: False
|
83 |
+
trace: False
|
84 |
+
train_data: xlarge_bestpool_filter/2017/0/{00000000..00000383}.tar::xlarge_bestpool_filter/2017/1/{00000000..00000383}.tar::xlarge_bestpool_filter/2017/10/{00000000..00000319}.tar::xlarge_bestpool_filter/2017/11/{00000000..00000383}.tar::xlarge_bestpool_filter/2017/12/{00000000..00000359}.tar::xlarge_bestpool_filter/2017/13/{00000000..00000383}.tar::xlarge_bestpool_filter/2017/14/{00000000..00000383}.tar::xlarge_bestpool_filter/2017/15/{00000000..00000369}.tar::xlarge_bestpool_filter/2017/16/{00000000..00000331}.tar::xlarge_bestpool_filter/2017/17/{00000000..00000319}.tar::xlarge_bestpool_filter/2017/18/{00000000..00000383}.tar::xlarge_bestpool_filter/2017/19/{00000000..00000383}.tar::xlarge_bestpool_filter/2017/2/{00000000..00000383}.tar::xlarge_bestpool_filter/2017/20/{00000000..00000372}.tar::xlarge_bestpool_filter/2017/21/{00000000..00000319}.tar::xlarge_bestpool_filter/2017/22/{00000000..00000319}.tar::xlarge_bestpool_filter/2017/23/{00000000..00000383}.tar::xlarge_bestpool_filter/2017/24/{00000000..00000255}.tar::xlarge_bestpool_filter/2017/25/{00000000..00000255}.tar::xlarge_bestpool_filter/2017/26/{00000000..00000063}.tar::xlarge_bestpool_filter/2017/27/{00000000..00000107}.tar::xlarge_bestpool_filter/2017/28/{00000000..00000447}.tar::xlarge_bestpool_filter/2017/29/{00000000..00000447}.tar::xlarge_bestpool_filter/2017/3/{00000000..00000383}.tar::xlarge_bestpool_filter/2017/30/{00000000..00000399}.tar::xlarge_bestpool_filter/2017/31/{00000000..00000399}.tar::xlarge_bestpool_filter/2017/32/{00000000..00000399}.tar::xlarge_bestpool_filter/2017/33/{00000000..00000401}.tar::xlarge_bestpool_filter/2017/34/{00000000..00000441}.tar::xlarge_bestpool_filter/2017/35/{00000000..00000433}.tar::xlarge_bestpool_filter/2017/36/{00000000..00000447}.tar::xlarge_bestpool_filter/2017/37/{00000000..00000447}.tar::xlarge_bestpool_filter/2017/38/{00000000..00000383}.tar::xlarge_bestpool_filter/2017/39/{00000000..00000383}.tar::xlarge_bestpool_filter/2017/4/{00000000..00000383}.tar::xlarge_bestpool_filter/2017/40/{00000000..00000383}.tar::xlarge_bestpool_filter/2017/41/{00000000..00000319}.tar::xlarge_bestpool_filter/2017/42/{00000000..00000383}.tar::xlarge_bestpool_filter/2017/43/{00000000..00000383}.tar::xlarge_bestpool_filter/2017/44/{00000000..00000383}.tar::xlarge_bestpool_filter/2017/45/{00000000..00000383}.tar::xlarge_bestpool_filter/2017/46/{00000000..00000383}.tar::xlarge_bestpool_filter/2017/47/{00000000..00000383}.tar::xlarge_bestpool_filter/2017/48/{00000000..00000419}.tar::xlarge_bestpool_filter/2017/49/{00000000..00000409}.tar::xlarge_bestpool_filter/2017/5/{00000000..00000383}.tar::xlarge_bestpool_filter/2017/50/{00000000..00000447}.tar::xlarge_bestpool_filter/2017/51/{00000000..00000447}.tar::xlarge_bestpool_filter/2017/52/{00000000..00000447}.tar::xlarge_bestpool_filter/2017/53/{00000000..00000664}.tar::xlarge_bestpool_filter/2017/54/{00000000..00000639}.tar::xlarge_bestpool_filter/2017/55/{00000000..00000238}.tar::xlarge_bestpool_filter/2017/56/{00000000..00000237}.tar::xlarge_bestpool_filter/2017/57/{00000000..00000205}.tar::xlarge_bestpool_filter/2017/58/{00000000..00000191}.tar::xlarge_bestpool_filter/2017/59/{00000000..00000191}.tar::xlarge_bestpool_filter/2017/6/{00000000..00000383}.tar::xlarge_bestpool_filter/2017/7/{00000000..00000383}.tar::xlarge_bestpool_filter/2017/8/{00000000..00000383}.tar::xlarge_bestpool_filter/2017/9/{00000000..00000340}.tar
|
85 |
+
train_data_upsampling_factors: None
|
86 |
+
train_num_samples: None
|
87 |
+
use_bn_sync: False
|
88 |
+
use_bnb_linear: None
|
89 |
+
val_data: None
|
90 |
+
val_frequency: 1
|
91 |
+
val_num_samples: None
|
92 |
+
wandb: False
|
93 |
+
wandb_notes:
|
94 |
+
wandb_project_name: open-clip
|
95 |
+
warmup: 2000
|
96 |
+
wd: 0.2
|
97 |
+
workers: 4
|
98 |
+
world_size: 64
|
99 |
+
zeroshot_frequency: 1
|
params/2019.yaml
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
accum_freq: 1
|
2 |
+
aug_cfg: {}
|
3 |
+
batch_size: 1408
|
4 |
+
beta1: 0.9
|
5 |
+
beta2: 0.98
|
6 |
+
checkpoint_path: /tmp/restart_2019/datacomp_xlarge-bestpool_restart_2019/checkpoints
|
7 |
+
coca_caption_loss_weight: 2.0
|
8 |
+
coca_contrastive_loss_weight: 1.0
|
9 |
+
copy_codebase: False
|
10 |
+
csv_caption_key: title
|
11 |
+
csv_img_key: filepath
|
12 |
+
csv_separator:
|
13 |
+
dataset_resampled: True
|
14 |
+
dataset_type: webdataset
|
15 |
+
ddp_static_graph: True
|
16 |
+
debug: False
|
17 |
+
decay_fraction: 0.2
|
18 |
+
delete_previous_checkpoint: False
|
19 |
+
device: cuda:0
|
20 |
+
dist_backend: nccl
|
21 |
+
dist_url: env://
|
22 |
+
distill: False
|
23 |
+
distill_model: None
|
24 |
+
distill_pretrained: None
|
25 |
+
distributed: True
|
26 |
+
epochs: 32
|
27 |
+
epochs_cooldown: None
|
28 |
+
eps: 1e-06
|
29 |
+
force_custom_text: False
|
30 |
+
force_image_size: None
|
31 |
+
force_patch_dropout: None
|
32 |
+
force_qk_norm: False
|
33 |
+
force_qk_norm_eps: 1e-05
|
34 |
+
force_quick_gelu: False
|
35 |
+
gather_with_grad: True
|
36 |
+
grad_checkpointing: True
|
37 |
+
grad_clip_norm: None
|
38 |
+
horovod: False
|
39 |
+
image_mean: None
|
40 |
+
image_std: None
|
41 |
+
imagenet_v2: None
|
42 |
+
imagenet_val: ../imagenet_validation
|
43 |
+
is_iteration_based: True
|
44 |
+
local_loss: True
|
45 |
+
local_rank: 0
|
46 |
+
lock_image: False
|
47 |
+
lock_image_freeze_bn_stats: False
|
48 |
+
lock_image_unlocked_groups: 0
|
49 |
+
lock_text: False
|
50 |
+
lock_text_freeze_layer_norm: False
|
51 |
+
lock_text_unlocked_layers: 0
|
52 |
+
log_every_n_steps: 100
|
53 |
+
log_level: 20
|
54 |
+
log_local: False
|
55 |
+
log_path: /tmp/restart_2019/datacomp_xlarge-bestpool_restart_2019/out.log
|
56 |
+
logs: /tmp/restart_2019
|
57 |
+
lr: 0.001
|
58 |
+
lr_cooldown_end: 0.0
|
59 |
+
lr_cooldown_power: 1.0
|
60 |
+
lr_scheduler: cosine
|
61 |
+
max_iterations: 20500
|
62 |
+
model: ViT-B-16
|
63 |
+
name: datacomp_xlarge-bestpool_restart_2019
|
64 |
+
new_run: True
|
65 |
+
no_set_device_rank: False
|
66 |
+
precision: amp
|
67 |
+
pretrained:
|
68 |
+
pretrained_image: False
|
69 |
+
rank: 0
|
70 |
+
remote_sync: xlarge_CL_bestpool_filter/restart_2019/
|
71 |
+
remote_sync_frequency: 300
|
72 |
+
remote_sync_protocol: s3
|
73 |
+
report_to:
|
74 |
+
resume: xlarge_CL_bestpool_filter/restart_2018/datacomp_xlarge-bestpool_restart_2018/checkpoints/epoch_9.pt
|
75 |
+
save_frequency: 1
|
76 |
+
save_most_recent: True
|
77 |
+
seed: 0
|
78 |
+
skip_scheduler: False
|
79 |
+
tensorboard: False
|
80 |
+
tensorboard_path:
|
81 |
+
torchcompile: False
|
82 |
+
torchscript: False
|
83 |
+
trace: False
|
84 |
+
train_data: xlarge_bestpool_filter/2019/0/{00000000..00000383}.tar::xlarge_bestpool_filter/2019/1/{00000000..00000383}.tar::xlarge_bestpool_filter/2019/10/{00000000..00000375}.tar::xlarge_bestpool_filter/2019/11/{00000000..00000383}.tar::xlarge_bestpool_filter/2019/12/{00000000..00000383}.tar::xlarge_bestpool_filter/2019/13/{00000000..00000385}.tar::xlarge_bestpool_filter/2019/14/{00000000..00000383}.tar::xlarge_bestpool_filter/2019/15/{00000000..00000383}.tar::xlarge_bestpool_filter/2019/16/{00000000..00000383}.tar::xlarge_bestpool_filter/2019/17/{00000000..00000347}.tar::xlarge_bestpool_filter/2019/18/{00000000..00000383}.tar::xlarge_bestpool_filter/2019/19/{00000000..00000383}.tar::xlarge_bestpool_filter/2019/2/{00000000..00000399}.tar::xlarge_bestpool_filter/2019/20/{00000000..00000383}.tar::xlarge_bestpool_filter/2019/21/{00000000..00000362}.tar::xlarge_bestpool_filter/2019/22/{00000000..00000319}.tar::xlarge_bestpool_filter/2019/23/{00000000..00000399}.tar::xlarge_bestpool_filter/2019/24/{00000000..00000279}.tar::xlarge_bestpool_filter/2019/25/{00000000..00000255}.tar::xlarge_bestpool_filter/2019/26/{00000000..00000063}.tar::xlarge_bestpool_filter/2019/27/{00000000..00000107}.tar::xlarge_bestpool_filter/2019/28/{00000000..00000447}.tar::xlarge_bestpool_filter/2019/29/{00000000..00000447}.tar::xlarge_bestpool_filter/2019/3/{00000000..00000383}.tar::xlarge_bestpool_filter/2019/30/{00000000..00000447}.tar::xlarge_bestpool_filter/2019/31/{00000000..00000447}.tar::xlarge_bestpool_filter/2019/32/{00000000..00000447}.tar::xlarge_bestpool_filter/2019/33/{00000000..00000447}.tar::xlarge_bestpool_filter/2019/34/{00000000..00000447}.tar::xlarge_bestpool_filter/2019/35/{00000000..00000447}.tar::xlarge_bestpool_filter/2019/36/{00000000..00000447}.tar::xlarge_bestpool_filter/2019/37/{00000000..00000447}.tar::xlarge_bestpool_filter/2019/38/{00000000..00000412}.tar::xlarge_bestpool_filter/2019/39/{00000000..00000383}.tar::xlarge_bestpool_filter/2019/4/{00000000..00000399}.tar::xlarge_bestpool_filter/2019/40/{00000000..00000383}.tar::xlarge_bestpool_filter/2019/41/{00000000..00000383}.tar::xlarge_bestpool_filter/2019/42/{00000000..00000395}.tar::xlarge_bestpool_filter/2019/43/{00000000..00000447}.tar::xlarge_bestpool_filter/2019/44/{00000000..00000447}.tar::xlarge_bestpool_filter/2019/45/{00000000..00000442}.tar::xlarge_bestpool_filter/2019/46/{00000000..00000431}.tar::xlarge_bestpool_filter/2019/47/{00000000..00000447}.tar::xlarge_bestpool_filter/2019/48/{00000000..00000447}.tar::xlarge_bestpool_filter/2019/49/{00000000..00000447}.tar::xlarge_bestpool_filter/2019/5/{00000000..00000426}.tar::xlarge_bestpool_filter/2019/50/{00000000..00000439}.tar::xlarge_bestpool_filter/2019/51/{00000000..00000447}.tar::xlarge_bestpool_filter/2019/52/{00000000..00000447}.tar::xlarge_bestpool_filter/2019/53/{00000000..00000703}.tar::xlarge_bestpool_filter/2019/54/{00000000..00000703}.tar::xlarge_bestpool_filter/2019/55/{00000000..00000255}.tar::xlarge_bestpool_filter/2019/56/{00000000..00000255}.tar::xlarge_bestpool_filter/2019/57/{00000000..00000255}.tar::xlarge_bestpool_filter/2019/58/{00000000..00000234}.tar::xlarge_bestpool_filter/2019/59/{00000000..00000247}.tar::xlarge_bestpool_filter/2019/6/{00000000..00000410}.tar::xlarge_bestpool_filter/2019/7/{00000000..00000436}.tar::xlarge_bestpool_filter/2019/8/{00000000..00000383}.tar::xlarge_bestpool_filter/2019/9/{00000000..00000383}.tar
|
85 |
+
train_data_upsampling_factors: None
|
86 |
+
train_num_samples: None
|
87 |
+
use_bn_sync: False
|
88 |
+
use_bnb_linear: None
|
89 |
+
val_data: None
|
90 |
+
val_frequency: 1
|
91 |
+
val_num_samples: None
|
92 |
+
wandb: False
|
93 |
+
wandb_notes:
|
94 |
+
wandb_project_name: open-clip
|
95 |
+
warmup: 2000
|
96 |
+
wd: 0.2
|
97 |
+
workers: 4
|
98 |
+
world_size: 64
|
99 |
+
zeroshot_frequency: 1
|
params/2020.yaml
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
accum_freq: 1
|
2 |
+
aug_cfg: {}
|
3 |
+
batch_size: 1408
|
4 |
+
beta1: 0.9
|
5 |
+
beta2: 0.98
|
6 |
+
checkpoint_path: /tmp/restart_2020/datacomp_xlarge-bestpool_restart_2020/checkpoints
|
7 |
+
coca_caption_loss_weight: 2.0
|
8 |
+
coca_contrastive_loss_weight: 1.0
|
9 |
+
copy_codebase: False
|
10 |
+
csv_caption_key: title
|
11 |
+
csv_img_key: filepath
|
12 |
+
csv_separator:
|
13 |
+
dataset_resampled: True
|
14 |
+
dataset_type: webdataset
|
15 |
+
ddp_static_graph: True
|
16 |
+
debug: False
|
17 |
+
decay_fraction: 0.2
|
18 |
+
delete_previous_checkpoint: False
|
19 |
+
device: cuda:0
|
20 |
+
dist_backend: nccl
|
21 |
+
dist_url: env://
|
22 |
+
distill: False
|
23 |
+
distill_model: None
|
24 |
+
distill_pretrained: None
|
25 |
+
distributed: True
|
26 |
+
epochs: 32
|
27 |
+
epochs_cooldown: None
|
28 |
+
eps: 1e-06
|
29 |
+
force_custom_text: False
|
30 |
+
force_image_size: None
|
31 |
+
force_patch_dropout: None
|
32 |
+
force_qk_norm: False
|
33 |
+
force_qk_norm_eps: 1e-05
|
34 |
+
force_quick_gelu: False
|
35 |
+
gather_with_grad: True
|
36 |
+
grad_checkpointing: True
|
37 |
+
grad_clip_norm: None
|
38 |
+
horovod: False
|
39 |
+
image_mean: None
|
40 |
+
image_std: None
|
41 |
+
imagenet_v2: None
|
42 |
+
imagenet_val: ../imagenet_validation
|
43 |
+
is_iteration_based: True
|
44 |
+
local_loss: True
|
45 |
+
local_rank: 0
|
46 |
+
lock_image: False
|
47 |
+
lock_image_freeze_bn_stats: False
|
48 |
+
lock_image_unlocked_groups: 0
|
49 |
+
lock_text: False
|
50 |
+
lock_text_freeze_layer_norm: False
|
51 |
+
lock_text_unlocked_layers: 0
|
52 |
+
log_every_n_steps: 100
|
53 |
+
log_level: 20
|
54 |
+
log_local: False
|
55 |
+
log_path: /tmp/restart_2020/datacomp_xlarge-bestpool_restart_2020/out.log
|
56 |
+
logs: /tmp/restart_2020
|
57 |
+
lr: 0.001
|
58 |
+
lr_cooldown_end: 0.0
|
59 |
+
lr_cooldown_power: 1.0
|
60 |
+
lr_scheduler: cosine
|
61 |
+
max_iterations: 20500
|
62 |
+
model: ViT-B-16
|
63 |
+
name: datacomp_xlarge-bestpool_restart_2020
|
64 |
+
new_run: True
|
65 |
+
no_set_device_rank: False
|
66 |
+
precision: amp
|
67 |
+
pretrained:
|
68 |
+
pretrained_image: False
|
69 |
+
rank: 0
|
70 |
+
remote_sync: xlarge_CL_bestpool_filter/restart_2020/
|
71 |
+
remote_sync_frequency: 300
|
72 |
+
remote_sync_protocol: s3
|
73 |
+
report_to:
|
74 |
+
resume: xlarge_CL_bestpool_filter/restart_2019/datacomp_xlarge-bestpool_restart_2019/checkpoints/epoch_9.pt
|
75 |
+
save_frequency: 1
|
76 |
+
save_most_recent: True
|
77 |
+
seed: 0
|
78 |
+
skip_scheduler: False
|
79 |
+
tensorboard: False
|
80 |
+
tensorboard_path:
|
81 |
+
torchcompile: False
|
82 |
+
torchscript: False
|
83 |
+
trace: False
|
84 |
+
train_data: xlarge_bestpool_filter/2020/0/{00000000..00000319}.tar::xlarge_bestpool_filter/2020/1/{00000000..00000319}.tar::xlarge_bestpool_filter/2020/10/{00000000..00000278}.tar::xlarge_bestpool_filter/2020/11/{00000000..00000319}.tar::xlarge_bestpool_filter/2020/12/{00000000..00000319}.tar::xlarge_bestpool_filter/2020/13/{00000000..00000319}.tar::xlarge_bestpool_filter/2020/14/{00000000..00000319}.tar::xlarge_bestpool_filter/2020/15/{00000000..00000319}.tar::xlarge_bestpool_filter/2020/16/{00000000..00000286}.tar::xlarge_bestpool_filter/2020/17/{00000000..00000266}.tar::xlarge_bestpool_filter/2020/18/{00000000..00000319}.tar::xlarge_bestpool_filter/2020/19/{00000000..00000319}.tar::xlarge_bestpool_filter/2020/2/{00000000..00000319}.tar::xlarge_bestpool_filter/2020/20/{00000000..00000318}.tar::xlarge_bestpool_filter/2020/21/{00000000..00000273}.tar::xlarge_bestpool_filter/2020/22/{00000000..00000255}.tar::xlarge_bestpool_filter/2020/23/{00000000..00000319}.tar::xlarge_bestpool_filter/2020/24/{00000000..00000253}.tar::xlarge_bestpool_filter/2020/25/{00000000..00000232}.tar::xlarge_bestpool_filter/2020/26/{00000000..00000063}.tar::xlarge_bestpool_filter/2020/27/{00000000..00000063}.tar::xlarge_bestpool_filter/2020/28/{00000000..00000383}.tar::xlarge_bestpool_filter/2020/29/{00000000..00000383}.tar::xlarge_bestpool_filter/2020/3/{00000000..00000319}.tar::xlarge_bestpool_filter/2020/30/{00000000..00000329}.tar::xlarge_bestpool_filter/2020/31/{00000000..00000324}.tar::xlarge_bestpool_filter/2020/32/{00000000..00000323}.tar::xlarge_bestpool_filter/2020/33/{00000000..00000357}.tar::xlarge_bestpool_filter/2020/34/{00000000..00000319}.tar::xlarge_bestpool_filter/2020/35/{00000000..00000319}.tar::xlarge_bestpool_filter/2020/36/{00000000..00000377}.tar::xlarge_bestpool_filter/2020/37/{00000000..00000381}.tar::xlarge_bestpool_filter/2020/38/{00000000..00000319}.tar::xlarge_bestpool_filter/2020/39/{00000000..00000318}.tar::xlarge_bestpool_filter/2020/4/{00000000..00000319}.tar::xlarge_bestpool_filter/2020/40/{00000000..00000319}.tar::xlarge_bestpool_filter/2020/41/{00000000..00000257}.tar::xlarge_bestpool_filter/2020/42/{00000000..00000319}.tar::xlarge_bestpool_filter/2020/43/{00000000..00000319}.tar::xlarge_bestpool_filter/2020/44/{00000000..00000319}.tar::xlarge_bestpool_filter/2020/45/{00000000..00000319}.tar::xlarge_bestpool_filter/2020/46/{00000000..00000319}.tar::xlarge_bestpool_filter/2020/47/{00000000..00000319}.tar::xlarge_bestpool_filter/2020/48/{00000000..00000383}.tar::xlarge_bestpool_filter/2020/49/{00000000..00000383}.tar::xlarge_bestpool_filter/2020/5/{00000000..00000319}.tar::xlarge_bestpool_filter/2020/50/{00000000..00000383}.tar::xlarge_bestpool_filter/2020/51/{00000000..00000383}.tar::xlarge_bestpool_filter/2020/52/{00000000..00000377}.tar::xlarge_bestpool_filter/2020/53/{00000000..00000545}.tar::xlarge_bestpool_filter/2020/54/{00000000..00000511}.tar::xlarge_bestpool_filter/2020/55/{00000000..00000191}.tar::xlarge_bestpool_filter/2020/56/{00000000..00000191}.tar::xlarge_bestpool_filter/2020/57/{00000000..00000191}.tar::xlarge_bestpool_filter/2020/58/{00000000..00000191}.tar::xlarge_bestpool_filter/2020/59/{00000000..00000191}.tar::xlarge_bestpool_filter/2020/6/{00000000..00000319}.tar::xlarge_bestpool_filter/2020/7/{00000000..00000319}.tar::xlarge_bestpool_filter/2020/8/{00000000..00000319}.tar::xlarge_bestpool_filter/2020/9/{00000000..00000299}.tar
|
85 |
+
train_data_upsampling_factors: None
|
86 |
+
train_num_samples: None
|
87 |
+
use_bn_sync: False
|
88 |
+
use_bnb_linear: None
|
89 |
+
val_data: None
|
90 |
+
val_frequency: 1
|
91 |
+
val_num_samples: None
|
92 |
+
wandb: False
|
93 |
+
wandb_notes:
|
94 |
+
wandb_project_name: open-clip
|
95 |
+
warmup: 2000
|
96 |
+
wd: 0.2
|
97 |
+
workers: 4
|
98 |
+
world_size: 64
|
99 |
+
zeroshot_frequency: 1
|
params/2021.yaml
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
accum_freq: 1
|
2 |
+
aug_cfg: {}
|
3 |
+
batch_size: 1408
|
4 |
+
beta1: 0.9
|
5 |
+
beta2: 0.98
|
6 |
+
checkpoint_path: /tmp/restart_2021/datacomp_xlarge-bestpool_restart_2021/checkpoints
|
7 |
+
coca_caption_loss_weight: 2.0
|
8 |
+
coca_contrastive_loss_weight: 1.0
|
9 |
+
copy_codebase: False
|
10 |
+
csv_caption_key: title
|
11 |
+
csv_img_key: filepath
|
12 |
+
csv_separator:
|
13 |
+
dataset_resampled: True
|
14 |
+
dataset_type: webdataset
|
15 |
+
ddp_static_graph: True
|
16 |
+
debug: False
|
17 |
+
decay_fraction: 0.2
|
18 |
+
delete_previous_checkpoint: False
|
19 |
+
device: cuda:0
|
20 |
+
dist_backend: nccl
|
21 |
+
dist_url: env://
|
22 |
+
distill: False
|
23 |
+
distill_model: None
|
24 |
+
distill_pretrained: None
|
25 |
+
distributed: True
|
26 |
+
epochs: 32
|
27 |
+
epochs_cooldown: None
|
28 |
+
eps: 1e-06
|
29 |
+
force_custom_text: False
|
30 |
+
force_image_size: None
|
31 |
+
force_patch_dropout: None
|
32 |
+
force_qk_norm: False
|
33 |
+
force_qk_norm_eps: 1e-05
|
34 |
+
force_quick_gelu: False
|
35 |
+
gather_with_grad: True
|
36 |
+
grad_checkpointing: True
|
37 |
+
grad_clip_norm: None
|
38 |
+
horovod: False
|
39 |
+
image_mean: None
|
40 |
+
image_std: None
|
41 |
+
imagenet_v2: None
|
42 |
+
imagenet_val: ../imagenet_validation
|
43 |
+
is_iteration_based: True
|
44 |
+
local_loss: True
|
45 |
+
local_rank: 0
|
46 |
+
lock_image: False
|
47 |
+
lock_image_freeze_bn_stats: False
|
48 |
+
lock_image_unlocked_groups: 0
|
49 |
+
lock_text: False
|
50 |
+
lock_text_freeze_layer_norm: False
|
51 |
+
lock_text_unlocked_layers: 0
|
52 |
+
log_every_n_steps: 100
|
53 |
+
log_level: 20
|
54 |
+
log_local: False
|
55 |
+
log_path: /tmp/restart_2021/datacomp_xlarge-bestpool_restart_2021/out.log
|
56 |
+
logs: /tmp/restart_2021
|
57 |
+
lr: 0.001
|
58 |
+
lr_cooldown_end: 0.0
|
59 |
+
lr_cooldown_power: 1.0
|
60 |
+
lr_scheduler: cosine
|
61 |
+
max_iterations: 20500
|
62 |
+
model: ViT-B-16
|
63 |
+
name: datacomp_xlarge-bestpool_restart_2021
|
64 |
+
new_run: True
|
65 |
+
no_set_device_rank: False
|
66 |
+
precision: amp
|
67 |
+
pretrained:
|
68 |
+
pretrained_image: False
|
69 |
+
rank: 0
|
70 |
+
remote_sync: xlarge_CL_bestpool_filter/restart_2021/
|
71 |
+
remote_sync_frequency: 300
|
72 |
+
remote_sync_protocol: s3
|
73 |
+
report_to:
|
74 |
+
resume: xlarge_CL_bestpool_filter/restart_2020/datacomp_xlarge-bestpool_restart_2020/checkpoints/epoch_12.pt
|
75 |
+
save_frequency: 1
|
76 |
+
save_most_recent: True
|
77 |
+
seed: 0
|
78 |
+
skip_scheduler: False
|
79 |
+
tensorboard: False
|
80 |
+
tensorboard_path:
|
81 |
+
torchcompile: False
|
82 |
+
torchscript: False
|
83 |
+
trace: False
|
84 |
+
train_data: xlarge_bestpool_filter/2021/0/{00000000..00000320}.tar::xlarge_bestpool_filter/2021/1/{00000000..00000321}.tar::xlarge_bestpool_filter/2021/10/{00000000..00000319}.tar::xlarge_bestpool_filter/2021/11/{00000000..00000321}.tar::xlarge_bestpool_filter/2021/12/{00000000..00000326}.tar::xlarge_bestpool_filter/2021/13/{00000000..00000383}.tar::xlarge_bestpool_filter/2021/14/{00000000..00000363}.tar::xlarge_bestpool_filter/2021/15/{00000000..00000319}.tar::xlarge_bestpool_filter/2021/16/{00000000..00000319}.tar::xlarge_bestpool_filter/2021/17/{00000000..00000319}.tar::xlarge_bestpool_filter/2021/18/{00000000..00000383}.tar::xlarge_bestpool_filter/2021/19/{00000000..00000334}.tar::xlarge_bestpool_filter/2021/2/{00000000..00000382}.tar::xlarge_bestpool_filter/2021/20/{00000000..00000319}.tar::xlarge_bestpool_filter/2021/21/{00000000..00000319}.tar::xlarge_bestpool_filter/2021/22/{00000000..00000319}.tar::xlarge_bestpool_filter/2021/23/{00000000..00000383}.tar::xlarge_bestpool_filter/2021/24/{00000000..00000255}.tar::xlarge_bestpool_filter/2021/25/{00000000..00000255}.tar::xlarge_bestpool_filter/2021/26/{00000000..00000063}.tar::xlarge_bestpool_filter/2021/27/{00000000..00000063}.tar::xlarge_bestpool_filter/2021/28/{00000000..00000383}.tar::xlarge_bestpool_filter/2021/29/{00000000..00000383}.tar::xlarge_bestpool_filter/2021/3/{00000000..00000380}.tar::xlarge_bestpool_filter/2021/30/{00000000..00000383}.tar::xlarge_bestpool_filter/2021/31/{00000000..00000383}.tar::xlarge_bestpool_filter/2021/32/{00000000..00000383}.tar::xlarge_bestpool_filter/2021/33/{00000000..00000383}.tar::xlarge_bestpool_filter/2021/34/{00000000..00000383}.tar::xlarge_bestpool_filter/2021/35/{00000000..00000383}.tar::xlarge_bestpool_filter/2021/36/{00000000..00000383}.tar::xlarge_bestpool_filter/2021/37/{00000000..00000383}.tar::xlarge_bestpool_filter/2021/38/{00000000..00000383}.tar::xlarge_bestpool_filter/2021/39/{00000000..00000373}.tar::xlarge_bestpool_filter/2021/4/{00000000..00000356}.tar::xlarge_bestpool_filter/2021/40/{00000000..00000357}.tar::xlarge_bestpool_filter/2021/41/{00000000..00000319}.tar::xlarge_bestpool_filter/2021/42/{00000000..00000383}.tar::xlarge_bestpool_filter/2021/43/{00000000..00000383}.tar::xlarge_bestpool_filter/2021/44/{00000000..00000383}.tar::xlarge_bestpool_filter/2021/45/{00000000..00000383}.tar::xlarge_bestpool_filter/2021/46/{00000000..00000383}.tar::xlarge_bestpool_filter/2021/47/{00000000..00000383}.tar::xlarge_bestpool_filter/2021/48/{00000000..00000383}.tar::xlarge_bestpool_filter/2021/49/{00000000..00000383}.tar::xlarge_bestpool_filter/2021/5/{00000000..00000382}.tar::xlarge_bestpool_filter/2021/50/{00000000..00000383}.tar::xlarge_bestpool_filter/2021/51/{00000000..00000383}.tar::xlarge_bestpool_filter/2021/52/{00000000..00000383}.tar::xlarge_bestpool_filter/2021/53/{00000000..00000639}.tar::xlarge_bestpool_filter/2021/54/{00000000..00000599}.tar::xlarge_bestpool_filter/2021/55/{00000000..00000191}.tar::xlarge_bestpool_filter/2021/56/{00000000..00000191}.tar::xlarge_bestpool_filter/2021/57/{00000000..00000191}.tar::xlarge_bestpool_filter/2021/58/{00000000..00000191}.tar::xlarge_bestpool_filter/2021/59/{00000000..00000191}.tar::xlarge_bestpool_filter/2021/6/{00000000..00000383}.tar::xlarge_bestpool_filter/2021/7/{00000000..00000383}.tar::xlarge_bestpool_filter/2021/8/{00000000..00000383}.tar::xlarge_bestpool_filter/2021/9/{00000000..00000319}.tar
|
85 |
+
train_data_upsampling_factors: None
|
86 |
+
train_num_samples: None
|
87 |
+
use_bn_sync: False
|
88 |
+
use_bnb_linear: None
|
89 |
+
val_data: None
|
90 |
+
val_frequency: 1
|
91 |
+
val_num_samples: None
|
92 |
+
wandb: False
|
93 |
+
wandb_notes:
|
94 |
+
wandb_project_name: open-clip
|
95 |
+
warmup: 2000
|
96 |
+
wd: 0.2
|
97 |
+
workers: 4
|
98 |
+
world_size: 64
|
99 |
+
zeroshot_frequency: 1
|
params/2022.yaml
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
accum_freq: 1
|
2 |
+
aug_cfg: {}
|
3 |
+
batch_size: 1408
|
4 |
+
beta1: 0.9
|
5 |
+
beta2: 0.98
|
6 |
+
checkpoint_path: /tmp/restart_2022/datacomp_xlarge-bestpool_restart_2022/checkpoints
|
7 |
+
coca_caption_loss_weight: 2.0
|
8 |
+
coca_contrastive_loss_weight: 1.0
|
9 |
+
copy_codebase: False
|
10 |
+
csv_caption_key: title
|
11 |
+
csv_img_key: filepath
|
12 |
+
csv_separator:
|
13 |
+
dataset_resampled: True
|
14 |
+
dataset_type: webdataset
|
15 |
+
ddp_static_graph: True
|
16 |
+
debug: False
|
17 |
+
decay_fraction: 0.2
|
18 |
+
delete_previous_checkpoint: False
|
19 |
+
device: cuda:0
|
20 |
+
dist_backend: nccl
|
21 |
+
dist_url: env://
|
22 |
+
distill: False
|
23 |
+
distill_model: None
|
24 |
+
distill_pretrained: None
|
25 |
+
distributed: True
|
26 |
+
epochs: 32
|
27 |
+
epochs_cooldown: None
|
28 |
+
eps: 1e-06
|
29 |
+
force_custom_text: False
|
30 |
+
force_image_size: None
|
31 |
+
force_patch_dropout: None
|
32 |
+
force_qk_norm: False
|
33 |
+
force_qk_norm_eps: 1e-05
|
34 |
+
force_quick_gelu: False
|
35 |
+
gather_with_grad: True
|
36 |
+
grad_checkpointing: True
|
37 |
+
grad_clip_norm: None
|
38 |
+
horovod: False
|
39 |
+
image_mean: None
|
40 |
+
image_std: None
|
41 |
+
imagenet_v2: None
|
42 |
+
imagenet_val: ../imagenet_validation
|
43 |
+
is_iteration_based: True
|
44 |
+
local_loss: True
|
45 |
+
local_rank: 0
|
46 |
+
lock_image: False
|
47 |
+
lock_image_freeze_bn_stats: False
|
48 |
+
lock_image_unlocked_groups: 0
|
49 |
+
lock_text: False
|
50 |
+
lock_text_freeze_layer_norm: False
|
51 |
+
lock_text_unlocked_layers: 0
|
52 |
+
log_every_n_steps: 100
|
53 |
+
log_level: 20
|
54 |
+
log_local: False
|
55 |
+
log_path: /tmp/restart_2022/datacomp_xlarge-bestpool_restart_2022/out.log
|
56 |
+
logs: /tmp/restart_2022
|
57 |
+
lr: 0.001
|
58 |
+
lr_cooldown_end: 0.0
|
59 |
+
lr_cooldown_power: 1.0
|
60 |
+
lr_scheduler: cosine
|
61 |
+
max_iterations: 20500
|
62 |
+
model: ViT-B-16
|
63 |
+
name: datacomp_xlarge-bestpool_restart_2022
|
64 |
+
new_run: True
|
65 |
+
no_set_device_rank: False
|
66 |
+
precision: amp
|
67 |
+
pretrained:
|
68 |
+
pretrained_image: False
|
69 |
+
rank: 0
|
70 |
+
remote_sync: xlarge_CL_bestpool_filter/restart_2022/
|
71 |
+
remote_sync_frequency: 300
|
72 |
+
remote_sync_protocol: s3
|
73 |
+
report_to:
|
74 |
+
resume: xlarge_CL_bestpool_filter/restart_2021/datacomp_xlarge-bestpool_restart_2021/checkpoints/epoch_10.pt
|
75 |
+
save_frequency: 1
|
76 |
+
save_most_recent: True
|
77 |
+
seed: 0
|
78 |
+
skip_scheduler: False
|
79 |
+
tensorboard: False
|
80 |
+
tensorboard_path:
|
81 |
+
torchcompile: False
|
82 |
+
torchscript: False
|
83 |
+
trace: False
|
84 |
+
train_data: xlarge_bestpool_filter/2022/0/{00000000..00000255}.tar::xlarge_bestpool_filter/2022/1/{00000000..00000255}.tar::xlarge_bestpool_filter/2022/10/{00000000..00000255}.tar::xlarge_bestpool_filter/2022/11/{00000000..00000255}.tar::xlarge_bestpool_filter/2022/12/{00000000..00000255}.tar::xlarge_bestpool_filter/2022/13/{00000000..00000257}.tar::xlarge_bestpool_filter/2022/14/{00000000..00000255}.tar::xlarge_bestpool_filter/2022/15/{00000000..00000255}.tar::xlarge_bestpool_filter/2022/16/{00000000..00000255}.tar::xlarge_bestpool_filter/2022/17/{00000000..00000255}.tar::xlarge_bestpool_filter/2022/18/{00000000..00000255}.tar::xlarge_bestpool_filter/2022/19/{00000000..00000255}.tar::xlarge_bestpool_filter/2022/2/{00000000..00000255}.tar::xlarge_bestpool_filter/2022/20/{00000000..00000255}.tar::xlarge_bestpool_filter/2022/21/{00000000..00000255}.tar::xlarge_bestpool_filter/2022/22/{00000000..00000255}.tar::xlarge_bestpool_filter/2022/23/{00000000..00000289}.tar::xlarge_bestpool_filter/2022/24/{00000000..00000191}.tar::xlarge_bestpool_filter/2022/25/{00000000..00000191}.tar::xlarge_bestpool_filter/2022/26/{00000000..00000063}.tar::xlarge_bestpool_filter/2022/27/{00000000..00000063}.tar::xlarge_bestpool_filter/2022/28/{00000000..00000319}.tar::xlarge_bestpool_filter/2022/29/{00000000..00000319}.tar::xlarge_bestpool_filter/2022/3/{00000000..00000255}.tar::xlarge_bestpool_filter/2022/30/{00000000..00000319}.tar::xlarge_bestpool_filter/2022/31/{00000000..00000319}.tar::xlarge_bestpool_filter/2022/32/{00000000..00000319}.tar::xlarge_bestpool_filter/2022/33/{00000000..00000319}.tar::xlarge_bestpool_filter/2022/34/{00000000..00000319}.tar::xlarge_bestpool_filter/2022/35/{00000000..00000319}.tar::xlarge_bestpool_filter/2022/36/{00000000..00000319}.tar::xlarge_bestpool_filter/2022/37/{00000000..00000319}.tar::xlarge_bestpool_filter/2022/38/{00000000..00000255}.tar::xlarge_bestpool_filter/2022/39/{00000000..00000255}.tar::xlarge_bestpool_filter/2022/4/{00000000..00000255}.tar::xlarge_bestpool_filter/2022/40/{00000000..00000255}.tar::xlarge_bestpool_filter/2022/41/{00000000..00000255}.tar::xlarge_bestpool_filter/2022/42/{00000000..00000255}.tar::xlarge_bestpool_filter/2022/43/{00000000..00000303}.tar::xlarge_bestpool_filter/2022/44/{00000000..00000306}.tar::xlarge_bestpool_filter/2022/45/{00000000..00000258}.tar::xlarge_bestpool_filter/2022/46/{00000000..00000259}.tar::xlarge_bestpool_filter/2022/47/{00000000..00000276}.tar::xlarge_bestpool_filter/2022/48/{00000000..00000319}.tar::xlarge_bestpool_filter/2022/49/{00000000..00000319}.tar::xlarge_bestpool_filter/2022/5/{00000000..00000255}.tar::xlarge_bestpool_filter/2022/50/{00000000..00000319}.tar::xlarge_bestpool_filter/2022/51/{00000000..00000319}.tar::xlarge_bestpool_filter/2022/52/{00000000..00000319}.tar::xlarge_bestpool_filter/2022/53/{00000000..00000447}.tar::xlarge_bestpool_filter/2022/54/{00000000..00000447}.tar::xlarge_bestpool_filter/2022/55/{00000000..00000189}.tar::xlarge_bestpool_filter/2022/56/{00000000..00000188}.tar::xlarge_bestpool_filter/2022/57/{00000000..00000184}.tar::xlarge_bestpool_filter/2022/58/{00000000..00000163}.tar::xlarge_bestpool_filter/2022/59/{00000000..00000176}.tar::xlarge_bestpool_filter/2022/6/{00000000..00000255}.tar::xlarge_bestpool_filter/2022/7/{00000000..00000310}.tar::xlarge_bestpool_filter/2022/8/{00000000..00000255}.tar::xlarge_bestpool_filter/2022/9/{00000000..00000255}.tar
|
85 |
+
train_data_upsampling_factors: None
|
86 |
+
train_num_samples: None
|
87 |
+
use_bn_sync: False
|
88 |
+
use_bnb_linear: None
|
89 |
+
val_data: None
|
90 |
+
val_frequency: 1
|
91 |
+
val_num_samples: None
|
92 |
+
wandb: False
|
93 |
+
wandb_notes:
|
94 |
+
wandb_project_name: open-clip
|
95 |
+
warmup: 2000
|
96 |
+
wd: 0.2
|
97 |
+
workers: 4
|
98 |
+
world_size: 64
|
99 |
+
zeroshot_frequency: 1
|