--- library_name: transformers license: apple-ascl metrics: - accuracy model-index: - name: aimv2-1B-patch14-336 results: - dataset: name: imagenet-1k type: imagenet-1k metrics: - name: Accuracy type: accuracy value: 88.7 verified: false task: name: Classification type: classification - dataset: name: inaturalist-18 type: inaturalist-18 metrics: - name: Accuracy type: accuracy value: 82.7 verified: false task: name: Classification type: classification - dataset: name: cifar10 type: cifar10 metrics: - name: Accuracy type: accuracy value: 99.4 verified: false task: name: Classification type: classification - dataset: name: cifar100 type: cifar100 metrics: - name: Accuracy type: accuracy value: 93.9 verified: false task: name: Classification type: classification - dataset: name: food101 type: food101 metrics: - name: Accuracy type: accuracy value: 97.1 verified: false task: name: Classification type: classification - dataset: name: dtd type: dtd metrics: - name: Accuracy type: accuracy value: 88.9 verified: false task: name: Classification type: classification - dataset: name: oxford-pets type: oxford-pets metrics: - name: Accuracy type: accuracy value: 96.9 verified: false task: name: Classification type: classification - dataset: name: stanford-cars type: stanford-cars metrics: - name: Accuracy type: accuracy value: 96.5 verified: false task: name: Classification type: classification - dataset: name: camelyon17 type: camelyon17 metrics: - name: Accuracy type: accuracy value: 94.2 verified: false task: name: Classification type: classification - dataset: name: patch-camelyon type: patch-camelyon metrics: - name: Accuracy type: accuracy value: 89.5 verified: false task: name: Classification type: classification - dataset: name: rxrx1 type: rxrx1 metrics: - name: Accuracy type: accuracy value: 8.4 verified: false task: name: Classification type: classification - dataset: name: eurosat type: eurosat metrics: - name: Accuracy type: accuracy value: 98.9 verified: false task: name: Classification type: classification - dataset: name: fmow type: fmow metrics: - name: Accuracy type: accuracy value: 65.1 verified: false task: name: Classification type: classification - dataset: name: domainnet-infographic type: domainnet-infographic metrics: - name: Accuracy type: accuracy value: 73.7 verified: false task: name: Classification type: classification pipeline_tag: image-feature-extraction tags: - vision - image-feature-extraction - mlx - pytorch --- # Introduction [[`AIMv2 Paper`](https://arxiv.org/abs/2411.14402)] [[`BibTeX`](#citation)] We introduce the AIMv2 family of vision models pre-trained with a multimodal autoregressive objective. AIMv2 pre-training is simple and straightforward to train and scale effectively. Some AIMv2 highlights include: 1. Outperforms OAI CLIP and SigLIP on the majority of multimodal understanding benchmarks. 2. Outperforms DINOv2 on open-vocabulary object detection and referring expression comprehension. 3. Exhibits strong recognition performance with AIMv2-3B achieving *89.5% on ImageNet using a frozen trunk*. AIMv2 Overview ## Usage ### PyTorch ```python import requests from PIL import Image from transformers import AutoImageProcessor, AutoModel url = "http://images.cocodataset.org/val2017/000000039769.jpg" image = Image.open(requests.get(url, stream=True).raw) processor = AutoImageProcessor.from_pretrained( "apple/aimv2-1B-patch14-336", ) model = AutoModel.from_pretrained( "apple/aimv2-1B-patch14-336", trust_remote_code=True, ) inputs = processor(images=image, return_tensors="pt") outputs = model(**inputs) ``` ### JAX ```python import requests from PIL import Image from transformers import AutoImageProcessor, FlaxAutoModel url = "http://images.cocodataset.org/val2017/000000039769.jpg" image = Image.open(requests.get(url, stream=True).raw) processor = AutoImageProcessor.from_pretrained( "apple/aimv2-1B-patch14-336", ) model = FlaxAutoModel.from_pretrained( "apple/aimv2-1B-patch14-336", trust_remote_code=True, ) inputs = processor(images=image, return_tensors="jax") outputs = model(**inputs) ``` ## Citation If you find our work useful, please consider citing us as: ```bibtex @misc{fini2024multimodalautoregressivepretraininglarge, author = {Fini, Enrico and Shukor, Mustafa and Li, Xiujun and Dufter, Philipp and Klein, Michal and Haldimann, David and Aitharaju, Sai and da Costa, Victor Guilherme Turrisi and Béthune, Louis and Gan, Zhe and Toshev, Alexander T and Eichner, Marcin and Nabi, Moin and Yang, Yinfei and Susskind, Joshua M. and El-Nouby, Alaaeldin}, url = {https://arxiv.org/abs/2411.14402}, eprint = {2411.14402}, eprintclass = {cs.CV}, eprinttype = {arXiv}, title = {Multimodal Autoregressive Pre-training of Large Vision Encoders}, year = {2024}, } ```