from typing import Optional, Tuple, Union import torch import dataclasses import math from transformers.modeling_attn_mask_utils import AttentionMaskConverter from transformers.utils import ModelOutput from .configuration_aimv2 import AIMv2Config, AIMv2VisionConfig, AIMv2TextConfig from torch import nn from torch.nn import functional as F from transformers.modeling_outputs import BaseModelOutputWithNoAttention from transformers.modeling_utils import PreTrainedModel __all__ = ["AIMv2VisionModel", "AIMv2TextModel", "AIMv2Model"] AIMv2VisionOrTextConfig = Union[AIMv2VisionConfig, AIMv2TextConfig] @dataclasses.dataclass class AIMv2Output(ModelOutput): logits_per_image: torch.Tensor logits_per_text: Optional[torch.Tensor] = None image_features: Optional[torch.Tensor] = None text_features: Optional[torch.Tensor] = None vision_output: Optional[BaseModelOutputWithNoAttention] = None text_output: Optional[BaseModelOutputWithNoAttention] = None class AIMv2TextPreprocessor(nn.Module): def __init__(self, config: AIMv2TextConfig): super().__init__() self.max_context_length = config.max_context_length self.eos_token_id = config.eos_token_id self.text_embedding = nn.Embedding(config.vocab_size, config.hidden_size) self.positional_embedding = nn.Parameter( torch.zeros(self.max_context_length, config.hidden_size) ) def forward(self, input_ids: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]: _, N = input_ids.shape max_len = min(N, self.max_context_length) eos_token_mask = input_ids == self.eos_token_id tokens = self.text_embedding(input_ids) tokens = tokens[:, :max_len] + self.positional_embedding[:max_len].unsqueeze(0) return tokens, eos_token_mask class AIMv2ExtractEOS(nn.Module): def forward( self, tokens: torch.Tensor, eos_token_mask: torch.Tensor ) -> torch.Tensor: B, _, D = tokens.shape eos_token_mask = torch.argmax(eos_token_mask.float(), dim=-1) assert eos_token_mask.shape == (B,) eos_token_mask = eos_token_mask.reshape(B, 1, 1).expand(B, 1, D) eos_token = torch.gather(tokens, 1, eos_token_mask) eos_token = eos_token.squeeze(1) return eos_token class RMSNorm(nn.Module): def __init__(self, dim: int, eps: float = 1e-6): super().__init__() self.weight = nn.Parameter(torch.ones(dim)) self.eps = eps def forward(self, x: torch.Tensor) -> torch.Tensor: output = self._norm(x.float()).type_as(x) return output * self.weight def extra_repr(self) -> str: return f"{tuple(self.weight.shape)}, eps={self.eps}" def _norm(self, x: torch.Tensor) -> torch.Tensor: return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps) class AIMv2SwiGLUFFN(nn.Module): def __init__(self, config: AIMv2VisionOrTextConfig): super().__init__() hidden_features = config.intermediate_size in_features = config.hidden_size bias = config.use_bias self.fc1 = nn.Linear(in_features, hidden_features, bias=bias) self.fc2 = nn.Linear(hidden_features, in_features, bias=bias) self.fc3 = nn.Linear(in_features, hidden_features, bias=bias) def forward(self, x: torch.Tensor) -> torch.Tensor: x = F.silu(self.fc1(x)) * self.fc3(x) x = self.fc2(x) return x class AIMv2PatchEmbed(nn.Module): def __init__(self, config: AIMv2VisionOrTextConfig): super().__init__() self.proj = nn.Conv2d( config.num_channels, config.hidden_size, kernel_size=(config.patch_size, config.patch_size), stride=(config.patch_size, config.patch_size), ) self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps) def forward(self, x: torch.Tensor) -> torch.Tensor: x = self.proj(x).flatten(2).transpose(1, 2) x = self.norm(x) return x class AIMv2ViTPreprocessor(nn.Module): def __init__(self, config: AIMv2VisionConfig): super().__init__() num_patches = (config.image_size // config.patch_size) ** 2 self.patchifier = AIMv2PatchEmbed(config) self.pos_embed = nn.Parameter(torch.zeros((1, num_patches, config.hidden_size))) def forward(self, x: torch.Tensor) -> torch.Tensor: tokens = self.patchifier(x) _, N, _ = tokens.shape pos_embed = self.pos_embed.to(tokens.device) tokens = tokens + pos_embed[:, :N] return tokens class AIMv2Attention(nn.Module): def __init__(self, config: AIMv2VisionOrTextConfig): super().__init__() dim = config.hidden_size self.num_heads = config.num_attention_heads self.is_causal = config.is_causal self.qkv = nn.Linear(dim, dim * 3, bias=config.qkv_bias) self.attn_drop = nn.Dropout(config.attention_dropout) self.proj = nn.Linear(dim, dim, bias=config.use_bias) self.proj_drop = nn.Dropout(config.projection_dropout) def forward( self, x: torch.Tensor, mask: Optional[torch.Tensor] = None ) -> torch.Tensor: B, N, C = x.shape qkv = ( self.qkv(x) .reshape(B, N, 3, self.num_heads, C // self.num_heads) .permute(2, 0, 3, 1, 4) ) q, k, v = qkv.unbind(0) if mask is None: x = F.scaled_dot_product_attention(q, k, v, is_causal=self.is_causal) else: mask_converter = AttentionMaskConverter(self.is_causal) mask = mask_converter.to_4d( mask, key_value_length=N, query_length=N, dtype=q.dtype ) x = F.scaled_dot_product_attention(q, k, v, attn_mask=mask) x = x.transpose(1, 2).contiguous().reshape(B, N, C) x = self.proj(x) x = self.proj_drop(x) return x class AIMv2Block(nn.Module): def __init__(self, config: AIMv2VisionOrTextConfig): super().__init__() self.attn = AIMv2Attention(config) self.norm_1 = RMSNorm(config.hidden_size, eps=config.rms_norm_eps) self.mlp = AIMv2SwiGLUFFN(config) self.norm_2 = RMSNorm(config.hidden_size, eps=config.rms_norm_eps) def forward( self, x: torch.Tensor, mask: Optional[torch.Tensor] = None ) -> torch.Tensor: x = x + self.attn(self.norm_1(x), mask) x = x + self.mlp(self.norm_2(x)) return x class AIMv2AttentionPoolingHead(nn.Module): def __init__(self, config: AIMv2VisionConfig): super().__init__() dim = config.hidden_size qkv_bias = config.qkv_bias self.num_heads = config.num_attention_heads self.num_queries = config.num_queries self.k = nn.Linear(dim, dim, bias=qkv_bias) self.v = nn.Linear(dim, dim, bias=qkv_bias) self.cls_token = nn.Parameter(torch.randn(1, self.num_queries, dim) * 0.02) self.linear = nn.Linear(dim, dim, bias=True) def forward(self, x: torch.Tensor) -> torch.Tensor: B, N, C = x.shape cls_token = self.cls_token.expand(B, -1, -1) q = cls_token.reshape( B, self.num_queries, self.num_heads, C // self.num_heads ).permute(0, 2, 1, 3) k = ( self.k(x) .reshape(B, N, self.num_heads, C // self.num_heads) .permute(0, 2, 1, 3) ) v = ( self.v(x) .reshape(B, N, self.num_heads, C // self.num_heads) .permute(0, 2, 1, 3) ) x_cls = F.scaled_dot_product_attention(q, k, v) x_cls = x_cls.transpose(1, 2).reshape(B, self.num_queries, C) x_cls = x_cls.mean(dim=1) out = self.linear(x_cls) return out class AIMv2Transformer(nn.Module): def __init__(self, config: AIMv2VisionOrTextConfig): super().__init__() self.blocks = nn.ModuleList( [AIMv2Block(config) for _ in range(config.num_hidden_layers)] ) self.post_trunk_norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps) def forward( self, tokens: torch.Tensor, mask: Optional[torch.Tensor] = None, output_hidden_states: bool = False, ) -> Tuple[torch.Tensor, Optional[Tuple[torch.Tensor, ...]]]: hidden_states = () if output_hidden_states else None for block in self.blocks: tokens = block(tokens, mask) if output_hidden_states: hidden_states += (tokens,) tokens = self.post_trunk_norm(tokens) return tokens, hidden_states class AIMv2PretrainedModel(PreTrainedModel): base_model_prefix = "aimv2" _supports_sdpa = True class AIMv2VisionModel(AIMv2PretrainedModel): config_class = AIMv2VisionConfig main_input_name = "pixel_values" _no_split_modules = ["AIMv2ViTPreprocessor", "AIMv2Block"] def __init__(self, config: AIMv2VisionConfig): super().__init__(config) self.preprocessor = AIMv2ViTPreprocessor(config) self.trunk = AIMv2Transformer(config) self.head = AIMv2AttentionPoolingHead(config) def forward( self, pixel_values: torch.Tensor, mask: Optional[torch.Tensor] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[ Tuple[torch.Tensor], Tuple[torch.Tensor, Tuple[torch.Tensor, ...]], BaseModelOutputWithNoAttention, ]: if output_hidden_states is None: output_hidden_states = self.config.output_hidden_states if return_dict is None: return_dict = self.config.use_return_dict x = self.preprocessor(pixel_values) x, hidden_states = self.trunk( x, mask, output_hidden_states=output_hidden_states ) x = self.head(x) if not return_dict: res = (x,) res += (hidden_states,) if output_hidden_states else () return res return BaseModelOutputWithNoAttention( last_hidden_state=x, hidden_states=hidden_states, ) class AIMv2TextModel(AIMv2PretrainedModel): config_class = AIMv2TextConfig main_input_name = "input_ids" _no_split_modules = ["AIMv2TextPreprocessor", "AIMv2Block"] def __init__(self, config: AIMv2TextConfig): super().__init__(config) self.preprocessor = AIMv2TextPreprocessor(config) self.trunk = AIMv2Transformer(config) self.head = AIMv2ExtractEOS() def forward( self, pixel_values: torch.Tensor, mask: Optional[torch.Tensor] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[ Tuple[torch.Tensor], Tuple[torch.Tensor, Tuple[torch.Tensor, ...]], BaseModelOutputWithNoAttention, ]: if output_hidden_states is None: output_hidden_states = self.config.output_hidden_states if return_dict is None: return_dict = self.config.use_return_dict x, eos_token_mask = self.preprocessor(pixel_values) x, hidden_states = self.trunk( x, mask, output_hidden_states=output_hidden_states ) x = self.head(x, eos_token_mask) if not return_dict: res = (x,) res += (hidden_states,) if output_hidden_states else () return res return BaseModelOutputWithNoAttention( last_hidden_state=x, hidden_states=hidden_states, ) class AIMv2Model(AIMv2PretrainedModel): config_class = AIMv2Config main_input_name = ["input_ids", "pixel_values"] _no_split_modules = ["AIMv2ViTPreprocessor", "AIMv2TextPreprocessor", "AIMv2Block"] def __init__(self, config: AIMv2Config): super().__init__(config) self.image_encoder = AIMv2VisionModel(config.vision_config) self.text_encoder = AIMv2TextModel(config.text_config) self.image_projector = nn.Linear( config.vision_config.hidden_size, config.projection_dim, bias=False ) self.text_projector = nn.Linear( config.text_config.hidden_size, config.projection_dim, bias=False ) self.log_logit_scale = nn.Parameter( torch.full([], fill_value=math.log(1.0 / config.init_temperature)) ) self.max_log_logit_scale = math.log(config.max_logit_scale) def forward( self, input_ids: torch.Tensor, pixel_values: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[ Tuple[ torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, Union[Tuple[torch.Tensor, ...], BaseModelOutputWithNoAttention], Union[Tuple[torch.Tensor, ...], BaseModelOutputWithNoAttention], ], AIMv2Output, ]: if return_dict is None: return_dict = self.config.use_return_dict image_out = self.image_encoder( pixel_values, output_hidden_states=output_hidden_states, return_dict=return_dict, ) image_features = image_out.last_hidden_state if return_dict else image_out[0] image_features = self.image_projector(image_features) image_features = F.normalize(image_features, p=2, dim=-1) text_out = self.text_encoder( input_ids, mask=attention_mask, output_hidden_states=output_hidden_states, return_dict=return_dict, ) text_features = text_out.last_hidden_state if return_dict else text_out[0] text_features = self.text_projector(text_features) text_features = F.normalize(text_features, p=2, dim=-1) logit_scale = self.log_logit_scale.clamp(0.0, self.max_log_logit_scale).exp() logits_per_text = (logit_scale * text_features) @ image_features.t() logits_per_image = logits_per_text.t() if not return_dict: return ( logits_per_image, logits_per_text, image_features, text_features, image_out, text_out, ) return AIMv2Output( logits_per_image=logits_per_image, logits_per_text=logits_per_text, image_features=image_features, text_features=text_features, vision_output=image_out, text_output=text_out, ) def get_image_features( self, input_pixels: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, ) -> torch.Tensor: out = self.image_encoder(input_pixels, mask=attention_mask, return_dict=True) image_features = self.image_projector(out.last_hidden_state) return image_features def get_text_features( self, input_ids: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, ) -> torch.Tensor: out = self.text_encoder(input_ids, mask=attention_mask, return_dict=True) text_features = self.text_projector(out.last_hidden_state) return text_features