File size: 10,100 Bytes
0410f31 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 |
from typing import Any, Optional, Tuple, Union
import flax.linen as nn
import jax
import jax.numpy as jnp
from .configuration_aimv2 import AIMv2Config
from flax.core import frozen_dict
from transformers import FlaxPreTrainedModel
from transformers.modeling_flax_outputs import FlaxBaseModelOutput
__all__ = ["FlaxAIMv2Model"]
class FlaxRMSNorm(nn.Module):
eps: float = 1e-6
@nn.compact
def __call__(self, x: jax.Array) -> jax.Array:
dim = x.shape[-1]
scale = self.param("scale", nn.initializers.ones_init(), (dim,))
output = self._norm(x.astype(jnp.float32)).astype(x.dtype)
output = output * scale.astype(x.dtype)
return output
def _norm(self, x: jax.Array) -> jax.Array:
return x * jax.lax.rsqrt(jnp.power(x, 2).mean(-1, keepdims=True) + self.eps)
class FlaxAIMv2SwiGLUFFN(nn.Module):
config: AIMv2Config
dtype: jnp.dtype = jnp.float32
@nn.compact
def __call__(self, x: jax.Array) -> jax.Array:
hidden_features = self.config.intermediate_size
in_features = self.config.hidden_size
bias = self.config.use_bias
x1 = nn.Dense(hidden_features, use_bias=bias, dtype=self.dtype, name="fc1")(x)
x2 = nn.Dense(hidden_features, use_bias=bias, dtype=self.dtype, name="fc3")(x)
x = nn.silu(x1) * x2
x = nn.Dense(in_features, use_bias=bias, dtype=self.dtype, name="fc2")(x)
return x
class FlaxAIMv2PatchEmbed(nn.Module):
config: AIMv2Config
dtype: jnp.dtype = jnp.float32
@nn.compact
def __call__(self, x: jax.Array) -> jax.Array:
patch_size = (self.config.patch_size, self.config.patch_size)
x = x.transpose(0, 2, 3, 1) # (N C H W) -> (N H W C)
x = nn.Conv(
self.config.hidden_size,
kernel_size=patch_size,
strides=patch_size,
padding=(0, 0),
dtype=self.dtype,
name="proj",
)(x)
x = jax.lax.collapse(x, 1, 3) # (N, H * W, F)
x = FlaxRMSNorm(self.config.rms_norm_eps, name="norm")(x)
return x
class FlaxAIMv2ViTPreprocessor(nn.Module):
config: AIMv2Config
dtype: jnp.dtype = jnp.float32
@nn.compact
def __call__(self, x: jax.Array) -> jax.Array:
tokens = FlaxAIMv2PatchEmbed(self.config, dtype=self.dtype, name="patchifier")(
x
)
_, N, _ = tokens.shape
pos_embed = self.param(
"pos_embed",
nn.initializers.normal(stddev=0.02),
(1, self.num_patches, self.config.hidden_size),
)
tokens = tokens + pos_embed[:, :N].astype(tokens.dtype)
return tokens
@property
def num_patches(self) -> int:
return (self.config.image_size // self.config.patch_size) ** 2
class FlaxAIMv2Attention(nn.Module):
config: AIMv2Config
dtype: jnp.dtype = jnp.float32
@nn.compact
def __call__(
self,
x: jax.Array,
mask: Optional[jax.Array] = None,
deterministic: bool = True,
output_attentions: bool = False,
) -> Tuple[jax.Array, Optional[jax.Array]]:
B, N, C = x.shape
dim, num_heads = self.config.hidden_size, self.config.num_attention_heads
qkv = nn.Dense(
dim * 3, use_bias=self.config.qkv_bias, dtype=self.dtype, name="qkv"
)(x)
qkv = qkv.reshape(B, N, 3, num_heads, C // num_heads).transpose(2, 0, 3, 1, 4)
q, k, v = qkv[0], qkv[1], qkv[2]
attn_weights = nn.dot_product_attention_weights(
q.swapaxes(-3, -2), # [B, N, H, C]
k.swapaxes(-3, -2),
mask=mask,
deterministic=deterministic,
dtype=self.dtype,
)
attn_weights = nn.Dropout(
self.config.attention_dropout, deterministic=deterministic, name="attn_drop"
)(attn_weights)
x = (attn_weights @ v).swapaxes(1, 2).reshape(B, N, C)
x = nn.Dense(dim, use_bias=self.config.use_bias, dtype=self.dtype, name="proj")(
x
)
x = nn.Dropout(
self.config.projection_dropout,
deterministic=deterministic,
name="proj_drop",
)(x)
return (x, attn_weights) if output_attentions else (x, None)
class FlaxAIMv2Block(nn.Module):
config: AIMv2Config
dtype: jnp.dtype = jnp.float32
def setup(self):
self.attn = FlaxAIMv2Attention(self.config, dtype=self.dtype, name="attn")
self.norm_1 = FlaxRMSNorm(self.config.rms_norm_eps, name="norm_1")
self.mlp = FlaxAIMv2SwiGLUFFN(self.config, dtype=self.dtype, name="mlp")
self.norm_2 = FlaxRMSNorm(self.config.rms_norm_eps, name="norm_2")
def __call__(
self,
x: jax.Array,
mask: Optional[jax.Array] = None,
deterministic: bool = True,
output_attentions: bool = False,
) -> Tuple[jax.Array, Optional[jax.Array]]:
features, attention = self.attn(
self.norm_1(x),
mask,
deterministic=deterministic,
output_attentions=output_attentions,
)
x = x + features
x = x + self.mlp(self.norm_2(x))
return x, attention
class FlaxAIMv2Transformer(nn.Module):
config: AIMv2Config
dtype: jnp.dtype = jnp.float32
@nn.compact
def __call__(
self,
tokens: jax.Array,
mask: Optional[jax.Array] = None,
deterministic: bool = True,
output_attentions: bool = False,
output_hidden_states: bool = False,
) -> Tuple[
jax.Array, Optional[Tuple[jax.Array, ...]], Optional[Tuple[jax.Array, ...]]
]:
hidden_states = () if output_hidden_states else None
attentions = () if output_attentions else None
for blk_id, block in enumerate(range(self.config.num_hidden_layers)):
tokens, attention = FlaxAIMv2Block(
self.config, dtype=self.dtype, name=f"layers_{blk_id}"
)(
tokens,
mask,
deterministic=deterministic,
output_attentions=output_attentions,
)
if output_hidden_states:
hidden_states += (tokens,)
if output_attentions:
attentions += (attention,)
tokens = FlaxRMSNorm(self.config.rms_norm_eps, name="post_trunk_norm")(tokens)
return tokens, hidden_states, attentions
class FlaxAIMv2Module(nn.Module):
config: AIMv2Config
dtype: jnp.dtype = jnp.float32
@nn.compact
def __call__(
self,
x: jax.Array,
mask: Optional[jax.Array] = None,
deterministic: bool = True,
output_attentions: bool = False,
output_hidden_states: bool = False,
) -> Tuple[
jax.Array, Optional[Tuple[jax.Array, ...]], Optional[Tuple[jax.Array, ...]]
]:
x = FlaxAIMv2ViTPreprocessor(
self.config, dtype=self.dtype, name="preprocessor"
)(x)
x, hidden_states, attentions = FlaxAIMv2Transformer(
self.config, dtype=self.dtype, name="trunk"
)(
x,
mask,
deterministic=deterministic,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
)
return x, hidden_states, attentions
class FlaxAIMv2PretrainedModel(FlaxPreTrainedModel):
config_class = AIMv2Config
base_model_prefix = "aimv2"
main_input_name = "pixel_values"
def __init__(
self,
config: AIMv2Config,
input_shape: Optional[Tuple[int, int, int, int]] = None, # [B, C, H, W]
dtype: jnp.dtype = jnp.float32,
**kwargs: Any,
):
if input_shape is None:
input_shape = (1, 3, config.image_size, config.image_size)
super().__init__(
config,
module=FlaxAIMv2Module(config, dtype=dtype),
input_shape=input_shape,
dtype=dtype,
**kwargs,
)
def init_weights(
self,
rng: jax.Array,
input_shape: Tuple[int, ...],
params: Optional[frozen_dict.FrozenDict] = None,
) -> frozen_dict.FrozenDict:
del params
input_pixels = jnp.empty(input_shape)
params = self.module.init(rng, input_pixels, deterministic=True)
return params["params"]
class FlaxAIMv2Model(FlaxAIMv2PretrainedModel):
def __call__(
self,
pixel_values: jax.Array,
params: Optional[frozen_dict.FrozenDict] = None,
mask: Optional[jax.Array] = None,
dropout_rng: Optional[jax.Array] = None,
deterministic: bool = True,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[
Tuple[jax.Array],
Tuple[jax.Array, Tuple[jax.Array, ...]],
Tuple[jax.Array, Tuple[jax.Array, ...], Tuple[jax.Array, ...]],
FlaxBaseModelOutput,
]:
if params is None:
params = self.params
if output_attentions is None:
output_attentions = self.config.output_attentions
if output_hidden_states is None:
output_hidden_states = self.config.output_hidden_states
if return_dict is None:
return_dict = self.config.use_return_dict
rngs = None if deterministic else {"dropout": dropout_rng}
x, hidden_states, attentions = self.module.apply(
{"params": params},
pixel_values,
mask,
rngs=rngs,
deterministic=deterministic,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
)
if not return_dict:
res = (x,)
res += (hidden_states,) if output_hidden_states else ()
res += (attentions,) if output_attentions else ()
return res
return FlaxBaseModelOutput(
last_hidden_state=x,
hidden_states=hidden_states,
attentions=attentions,
)
|