|
from typing import Optional, Tuple, Union |
|
|
|
import torch |
|
from .configuration_aimv2 import AIMv2Config |
|
from torch import nn |
|
from torch.nn import functional as F |
|
from transformers.modeling_outputs import BaseModelOutputWithNoAttention |
|
from transformers.modeling_utils import PreTrainedModel |
|
|
|
__all__ = ["AIMv2Model"] |
|
|
|
|
|
def _get_1d_sincos_pos_embed_from_grid( |
|
embed_dim: int, pos: torch.Tensor |
|
) -> torch.Tensor: |
|
omega = torch.arange(embed_dim // 2).float() |
|
omega /= embed_dim / 2.0 |
|
omega = 1.0 / 10000**omega |
|
pos = pos.reshape(-1) |
|
out = pos[:, None] * omega[None, :] |
|
emb_sin, emb_cos = torch.sin(out), torch.cos(out) |
|
emb = torch.concatenate([emb_sin, emb_cos], dim=1) |
|
return emb |
|
|
|
|
|
def get_sincos_pos_embed(h: int, w: int, embed_dim: int) -> torch.Tensor: |
|
assert embed_dim % 2 == 0, embed_dim |
|
grid_h = torch.arange(h).float() |
|
grid_w = torch.arange(w).float() |
|
grid = torch.meshgrid(grid_w, grid_h, indexing="xy") |
|
grid = torch.stack(grid, dim=0) |
|
grid = grid.reshape([2, 1, h, w]) |
|
emb_h = _get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[0]) |
|
emb_w = _get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[1]) |
|
pos_embed = torch.concatenate([emb_h, emb_w], dim=1) |
|
return pos_embed |
|
|
|
|
|
class RMSNorm(nn.Module): |
|
def __init__(self, dim: int, eps: float = 1e-6): |
|
super().__init__() |
|
self.weight = nn.Parameter(torch.ones(dim)) |
|
self.eps = eps |
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor: |
|
output = self._norm(x.float()).type_as(x) |
|
return output * self.weight |
|
|
|
def extra_repr(self) -> str: |
|
return f"{tuple(self.weight.shape)}, eps={self.eps}" |
|
|
|
def _norm(self, x: torch.Tensor) -> torch.Tensor: |
|
return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps) |
|
|
|
|
|
class AIMv2SwiGLUFFN(nn.Module): |
|
def __init__(self, config: AIMv2Config): |
|
super().__init__() |
|
hidden_features = config.intermediate_size |
|
in_features = config.hidden_size |
|
bias = config.use_bias |
|
|
|
self.fc1 = nn.Linear(in_features, hidden_features, bias=bias) |
|
self.fc2 = nn.Linear(hidden_features, in_features, bias=bias) |
|
self.fc3 = nn.Linear(in_features, hidden_features, bias=bias) |
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor: |
|
x = F.silu(self.fc1(x)) * self.fc3(x) |
|
x = self.fc2(x) |
|
return x |
|
|
|
|
|
class AIMv2PatchEmbed(nn.Module): |
|
def __init__(self, config: AIMv2Config): |
|
super().__init__() |
|
self.proj = nn.Conv2d( |
|
config.num_channels, |
|
config.hidden_size, |
|
kernel_size=(config.patch_size, config.patch_size), |
|
stride=(config.patch_size, config.patch_size), |
|
) |
|
self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps) |
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor: |
|
x = self.proj(x).flatten(2).transpose(1, 2) |
|
x = self.norm(x) |
|
return x |
|
|
|
|
|
class AIMv2ViTPreprocessor(nn.Module): |
|
def __init__(self, config: AIMv2Config): |
|
super().__init__() |
|
self.patch_h = config.patch_size |
|
self.patch_w = config.patch_size |
|
self.embed_dim = config.hidden_size |
|
|
|
self.patchifier = AIMv2PatchEmbed(config) |
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor: |
|
_, _, H, W = x.shape |
|
tokens = self.patchifier(x) |
|
pos_embed = get_sincos_pos_embed( |
|
H // self.patch_h, W // self.patch_w, embed_dim=self.embed_dim |
|
) |
|
tokens = tokens + pos_embed.to(tokens.device) |
|
return tokens |
|
|
|
|
|
class AIMv2Attention(nn.Module): |
|
def __init__(self, config: AIMv2Config): |
|
super().__init__() |
|
dim = config.hidden_size |
|
|
|
self.num_heads = config.num_attention_heads |
|
self.qkv = nn.Linear(dim, dim * 3, bias=config.qkv_bias) |
|
self.attn_drop = nn.Dropout(config.attention_dropout) |
|
self.proj = nn.Linear(dim, dim, bias=config.use_bias) |
|
self.proj_drop = nn.Dropout(config.projection_dropout) |
|
|
|
def forward( |
|
self, x: torch.Tensor, mask: Optional[torch.Tensor] = None |
|
) -> torch.Tensor: |
|
B, N, C = x.shape |
|
qkv = ( |
|
self.qkv(x) |
|
.reshape(B, N, 3, self.num_heads, C // self.num_heads) |
|
.permute(2, 0, 3, 1, 4) |
|
) |
|
q, k, v = qkv.unbind(0) |
|
|
|
x = F.scaled_dot_product_attention(q, k, v, attn_mask=mask) |
|
x = x.transpose(1, 2).contiguous().reshape(B, N, C) |
|
x = self.proj(x) |
|
x = self.proj_drop(x) |
|
return x |
|
|
|
|
|
class AIMv2Block(nn.Module): |
|
def __init__(self, config: AIMv2Config): |
|
super().__init__() |
|
self.attn = AIMv2Attention(config) |
|
self.norm_1 = RMSNorm(config.hidden_size, eps=config.rms_norm_eps) |
|
self.mlp = AIMv2SwiGLUFFN(config) |
|
self.norm_2 = RMSNorm(config.hidden_size, eps=config.rms_norm_eps) |
|
|
|
def forward( |
|
self, x: torch.Tensor, mask: Optional[torch.Tensor] = None |
|
) -> torch.Tensor: |
|
x = x + self.attn(self.norm_1(x), mask) |
|
x = x + self.mlp(self.norm_2(x)) |
|
return x |
|
|
|
|
|
class AIMv2Transformer(nn.Module): |
|
def __init__(self, config: AIMv2Config): |
|
super().__init__() |
|
self.blocks = nn.ModuleList( |
|
[AIMv2Block(config) for _ in range(config.num_hidden_layers)] |
|
) |
|
self.post_trunk_norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps) |
|
|
|
def forward( |
|
self, |
|
tokens: torch.Tensor, |
|
mask: Optional[torch.Tensor] = None, |
|
output_hidden_states: bool = False, |
|
) -> Tuple[torch.Tensor, Optional[Tuple[torch.Tensor, ...]]]: |
|
hidden_states = () if output_hidden_states else None |
|
for block in self.blocks: |
|
tokens = block(tokens, mask) |
|
if output_hidden_states: |
|
hidden_states += (tokens,) |
|
tokens = self.post_trunk_norm(tokens) |
|
return tokens, hidden_states |
|
|
|
|
|
class AIMv2PretrainedModel(PreTrainedModel): |
|
config_class = AIMv2Config |
|
base_model_prefix = "aimv2" |
|
main_input_name = "pixel_values" |
|
_supports_sdpa = True |
|
|
|
|
|
class AIMv2Model(AIMv2PretrainedModel): |
|
def __init__(self, config: AIMv2Config): |
|
super().__init__(config) |
|
self.preprocessor = AIMv2ViTPreprocessor(config) |
|
self.trunk = AIMv2Transformer(config) |
|
|
|
def forward( |
|
self, |
|
pixel_values: torch.Tensor, |
|
mask: Optional[torch.Tensor] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[ |
|
Tuple[torch.Tensor], |
|
Tuple[torch.Tensor, Tuple[torch.Tensor, ...]], |
|
BaseModelOutputWithNoAttention, |
|
]: |
|
if output_hidden_states is None: |
|
output_hidden_states = self.config.output_hidden_states |
|
if return_dict is None: |
|
return_dict = self.config.use_return_dict |
|
|
|
x = self.preprocessor(pixel_values) |
|
x, hidden_states = self.trunk( |
|
x, mask, output_hidden_states=output_hidden_states |
|
) |
|
|
|
if not return_dict: |
|
res = (x,) |
|
res += (hidden_states,) if output_hidden_states else () |
|
return res |
|
|
|
return BaseModelOutputWithNoAttention( |
|
last_hidden_state=x, |
|
hidden_states=hidden_states, |
|
) |
|
|
|
|