File size: 208,229 Bytes
51bdc11 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 |
program(1.0)
[buildInfo = dict<tensor<string, []>, tensor<string, []>>({{"coremlc-component-MIL", "5.30.0"}, {"coremlc-version", "1839.0.0"}})]
{
func main<ios16>(tensor<fp32, [1, 77]> input_ids) {
tensor<int32, []> var_5 = const()[name = tensor<string, []>("op_5"), val = tensor<int32, []>(-1)];
tensor<bool, []> var_6 = const()[name = tensor<string, []>("op_6"), val = tensor<bool, []>(false)];
tensor<string, []> cast_1_dtype_0 = const()[name = tensor<string, []>("cast_1_dtype_0"), val = tensor<string, []>("int32")];
tensor<int32, []> inputs_embeds_axis_0 = const()[name = tensor<string, []>("inputs_embeds_axis_0"), val = tensor<int32, []>(0)];
tensor<int32, []> inputs_embeds_batch_dims_0 = const()[name = tensor<string, []>("inputs_embeds_batch_dims_0"), val = tensor<int32, []>(0)];
tensor<fp16, [49408, 768]> text_encoder_text_model_embeddings_token_embedding_weight_to_fp16 = const()[name = tensor<string, []>("text_encoder_text_model_embeddings_token_embedding_weight_to_fp16"), val = tensor<fp16, [49408, 768]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(64)))];
tensor<int32, [1, 77]> cast_2 = cast(dtype = cast_1_dtype_0, x = input_ids)[name = tensor<string, []>("cast_2")];
tensor<fp16, [1, 77, 768]> inputs_embeds_cast = gather(axis = inputs_embeds_axis_0, batch_dims = inputs_embeds_batch_dims_0, indices = cast_2, x = text_encoder_text_model_embeddings_token_embedding_weight_to_fp16)[name = tensor<string, []>("inputs_embeds_cast")];
tensor<fp16, [1, 77, 768]> position_embeddings_to_fp16_palettized = constexpr_lut_to_dense()[indices = tensor<uint8, [44352]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(75890816))), lut = tensor<fp16, [64]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(75935232))), name = tensor<string, []>("position_embeddings_to_fp16_palettized"), shape = tensor<uint32, [3]>([1, 77, 768])];
tensor<fp16, [1, 77, 768]> input_3_cast = add(x = inputs_embeds_cast, y = position_embeddings_to_fp16_palettized)[name = tensor<string, []>("input_3_cast")];
tensor<int32, [1]> hidden_states_1_axes_0 = const()[name = tensor<string, []>("hidden_states_1_axes_0"), val = tensor<int32, [1]>([-1])];
tensor<fp16, [768]> text_encoder_text_model_encoder_layers_0_layer_norm1_weight_to_fp16 = const()[name = tensor<string, []>("text_encoder_text_model_encoder_layers_0_layer_norm1_weight_to_fp16"), val = tensor<fp16, [768]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(75935424)))];
tensor<fp16, [768]> text_encoder_text_model_encoder_layers_0_layer_norm1_bias_to_fp16 = const()[name = tensor<string, []>("text_encoder_text_model_encoder_layers_0_layer_norm1_bias_to_fp16"), val = tensor<fp16, [768]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(75937024)))];
tensor<fp16, []> var_12_to_fp16 = const()[name = tensor<string, []>("op_12_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
tensor<fp16, [1, 77, 768]> hidden_states_1_cast = layer_norm(axes = hidden_states_1_axes_0, beta = text_encoder_text_model_encoder_layers_0_layer_norm1_bias_to_fp16, epsilon = var_12_to_fp16, gamma = text_encoder_text_model_encoder_layers_0_layer_norm1_weight_to_fp16, x = input_3_cast)[name = tensor<string, []>("hidden_states_1_cast")];
tensor<fp16, [768, 768]> text_encoder_text_model_encoder_layers_0_self_attn_q_proj_weight_to_fp16_palettized = constexpr_lut_to_dense()[indices = tensor<uint8, [442368]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(75938624))), lut = tensor<fp16, [64]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(76381056))), name = tensor<string, []>("text_encoder_text_model_encoder_layers_0_self_attn_q_proj_weight_to_fp16_palettized"), shape = tensor<uint32, [2]>([768, 768])];
tensor<fp16, [768]> text_encoder_text_model_encoder_layers_0_self_attn_q_proj_bias_to_fp16 = const()[name = tensor<string, []>("text_encoder_text_model_encoder_layers_0_self_attn_q_proj_bias_to_fp16"), val = tensor<fp16, [768]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(76381248)))];
tensor<fp16, [1, 77, 768]> var_86_cast = linear(bias = text_encoder_text_model_encoder_layers_0_self_attn_q_proj_bias_to_fp16, weight = text_encoder_text_model_encoder_layers_0_self_attn_q_proj_weight_to_fp16_palettized, x = hidden_states_1_cast)[name = tensor<string, []>("op_86_cast")];
tensor<fp16, []> var_87_to_fp16 = const()[name = tensor<string, []>("op_87_to_fp16"), val = tensor<fp16, []>(0x1p-3)];
tensor<fp16, [1, 77, 768]> tensor_5_cast = mul(x = var_86_cast, y = var_87_to_fp16)[name = tensor<string, []>("tensor_5_cast")];
tensor<fp16, [768, 768]> text_encoder_text_model_encoder_layers_0_self_attn_k_proj_weight_to_fp16_palettized = constexpr_lut_to_dense()[indices = tensor<uint8, [442368]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(76382848))), lut = tensor<fp16, [64]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(76825280))), name = tensor<string, []>("text_encoder_text_model_encoder_layers_0_self_attn_k_proj_weight_to_fp16_palettized"), shape = tensor<uint32, [2]>([768, 768])];
tensor<fp16, [768]> text_encoder_text_model_encoder_layers_0_self_attn_k_proj_bias_to_fp16 = const()[name = tensor<string, []>("text_encoder_text_model_encoder_layers_0_self_attn_k_proj_bias_to_fp16"), val = tensor<fp16, [768]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(76825472)))];
tensor<fp16, [1, 77, 768]> tensor_1_cast = linear(bias = text_encoder_text_model_encoder_layers_0_self_attn_k_proj_bias_to_fp16, weight = text_encoder_text_model_encoder_layers_0_self_attn_k_proj_weight_to_fp16_palettized, x = hidden_states_1_cast)[name = tensor<string, []>("tensor_1_cast")];
tensor<int32, [4]> var_92 = const()[name = tensor<string, []>("op_92"), val = tensor<int32, [4]>([1, -1, 12, 64])];
tensor<fp16, [1, 77, 12, 64]> var_93_cast = reshape(shape = var_92, x = tensor_1_cast)[name = tensor<string, []>("op_93_cast")];
tensor<int32, [4]> var_94_perm_0 = const()[name = tensor<string, []>("op_94_perm_0"), val = tensor<int32, [4]>([0, 2, 1, 3])];
tensor<fp16, [768, 768]> text_encoder_text_model_encoder_layers_0_self_attn_v_proj_weight_to_fp16_palettized = constexpr_lut_to_dense()[indices = tensor<uint8, [442368]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(76827072))), lut = tensor<fp16, [64]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(77269504))), name = tensor<string, []>("text_encoder_text_model_encoder_layers_0_self_attn_v_proj_weight_to_fp16_palettized"), shape = tensor<uint32, [2]>([768, 768])];
tensor<fp16, [768]> text_encoder_text_model_encoder_layers_0_self_attn_v_proj_bias_to_fp16 = const()[name = tensor<string, []>("text_encoder_text_model_encoder_layers_0_self_attn_v_proj_bias_to_fp16"), val = tensor<fp16, [768]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(77269696)))];
tensor<fp16, [1, 77, 768]> tensor_3_cast = linear(bias = text_encoder_text_model_encoder_layers_0_self_attn_v_proj_bias_to_fp16, weight = text_encoder_text_model_encoder_layers_0_self_attn_v_proj_weight_to_fp16_palettized, x = hidden_states_1_cast)[name = tensor<string, []>("tensor_3_cast")];
tensor<int32, [4]> var_99 = const()[name = tensor<string, []>("op_99"), val = tensor<int32, [4]>([1, -1, 12, 64])];
tensor<fp16, [1, 77, 12, 64]> var_100_cast = reshape(shape = var_99, x = tensor_3_cast)[name = tensor<string, []>("op_100_cast")];
tensor<int32, [4]> var_101_perm_0 = const()[name = tensor<string, []>("op_101_perm_0"), val = tensor<int32, [4]>([0, 2, 1, 3])];
tensor<int32, [4]> var_108 = const()[name = tensor<string, []>("op_108"), val = tensor<int32, [4]>([1, 77, 12, 64])];
tensor<fp16, [1, 77, 12, 64]> var_109_cast = reshape(shape = var_108, x = tensor_5_cast)[name = tensor<string, []>("op_109_cast")];
tensor<int32, [4]> var_110_perm_0 = const()[name = tensor<string, []>("op_110_perm_0"), val = tensor<int32, [4]>([0, 2, 1, 3])];
tensor<int32, [3]> var_112 = const()[name = tensor<string, []>("op_112"), val = tensor<int32, [3]>([12, -1, 64])];
tensor<fp16, [1, 12, 77, 64]> transpose_59 = transpose(perm = var_110_perm_0, x = var_109_cast)[name = tensor<string, []>("transpose_59")];
tensor<fp16, [12, 77, 64]> query_states_1_cast = reshape(shape = var_112, x = transpose_59)[name = tensor<string, []>("query_states_1_cast")];
tensor<int32, [3]> var_114 = const()[name = tensor<string, []>("op_114"), val = tensor<int32, [3]>([12, -1, 64])];
tensor<fp16, [1, 12, 77, 64]> transpose_58 = transpose(perm = var_94_perm_0, x = var_93_cast)[name = tensor<string, []>("transpose_58")];
tensor<fp16, [12, 77, 64]> key_states_3_cast = reshape(shape = var_114, x = transpose_58)[name = tensor<string, []>("key_states_3_cast")];
tensor<int32, [3]> var_116 = const()[name = tensor<string, []>("op_116"), val = tensor<int32, [3]>([12, -1, 64])];
tensor<fp16, [1, 12, 77, 64]> transpose_57 = transpose(perm = var_101_perm_0, x = var_100_cast)[name = tensor<string, []>("transpose_57")];
tensor<fp16, [12, 77, 64]> value_states_3_cast = reshape(shape = var_116, x = transpose_57)[name = tensor<string, []>("value_states_3_cast")];
tensor<int32, [3]> var_119_perm_0 = const()[name = tensor<string, []>("op_119_perm_0"), val = tensor<int32, [3]>([0, 2, 1])];
tensor<bool, []> attn_weights_1_transpose_x_0 = const()[name = tensor<string, []>("attn_weights_1_transpose_x_0"), val = tensor<bool, []>(false)];
tensor<bool, []> attn_weights_1_transpose_y_0 = const()[name = tensor<string, []>("attn_weights_1_transpose_y_0"), val = tensor<bool, []>(false)];
tensor<fp16, [12, 64, 77]> transpose_56 = transpose(perm = var_119_perm_0, x = key_states_3_cast)[name = tensor<string, []>("transpose_56")];
tensor<fp16, [12, 77, 77]> attn_weights_1_cast = matmul(transpose_x = attn_weights_1_transpose_x_0, transpose_y = attn_weights_1_transpose_y_0, x = query_states_1_cast, y = transpose_56)[name = tensor<string, []>("attn_weights_1_cast")];
tensor<int32, [4]> var_121 = const()[name = tensor<string, []>("op_121"), val = tensor<int32, [4]>([1, 12, 77, 77])];
tensor<fp16, [1, 12, 77, 77]> var_122_cast = reshape(shape = var_121, x = attn_weights_1_cast)[name = tensor<string, []>("op_122_cast")];
tensor<fp16, [1, 1, 77, 77]> causal_attention_mask_to_fp16_palettized = constexpr_lut_to_dense()[indices = tensor<uint8, [4447]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(77271296))), lut = tensor<fp16, [64]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(77275840))), name = tensor<string, []>("causal_attention_mask_to_fp16_palettized"), shape = tensor<uint32, [4]>([1, 1, 77, 77])];
tensor<fp16, [1, 12, 77, 77]> attn_weights_3_cast = add(x = var_122_cast, y = causal_attention_mask_to_fp16_palettized)[name = tensor<string, []>("attn_weights_3_cast")];
tensor<int32, [3]> var_127 = const()[name = tensor<string, []>("op_127"), val = tensor<int32, [3]>([12, 77, 77])];
tensor<fp16, [12, 77, 77]> input_5_cast = reshape(shape = var_127, x = attn_weights_3_cast)[name = tensor<string, []>("input_5_cast")];
tensor<fp16, [12, 77, 77]> input_7_cast = softmax(axis = var_5, x = input_5_cast)[name = tensor<string, []>("input_7_cast")];
tensor<bool, []> attn_output_1_transpose_x_0 = const()[name = tensor<string, []>("attn_output_1_transpose_x_0"), val = tensor<bool, []>(false)];
tensor<bool, []> attn_output_1_transpose_y_0 = const()[name = tensor<string, []>("attn_output_1_transpose_y_0"), val = tensor<bool, []>(false)];
tensor<fp16, [12, 77, 64]> attn_output_1_cast = matmul(transpose_x = attn_output_1_transpose_x_0, transpose_y = attn_output_1_transpose_y_0, x = input_7_cast, y = value_states_3_cast)[name = tensor<string, []>("attn_output_1_cast")];
tensor<int32, [4]> var_132 = const()[name = tensor<string, []>("op_132"), val = tensor<int32, [4]>([1, 12, 77, 64])];
tensor<fp16, [1, 12, 77, 64]> attn_output_3_cast = reshape(shape = var_132, x = attn_output_1_cast)[name = tensor<string, []>("attn_output_3_cast")];
tensor<int32, [4]> attn_output_5_perm_0 = const()[name = tensor<string, []>("attn_output_5_perm_0"), val = tensor<int32, [4]>([0, 2, 1, 3])];
tensor<int32, [3]> var_135 = const()[name = tensor<string, []>("op_135"), val = tensor<int32, [3]>([1, 77, 768])];
tensor<fp16, [1, 77, 12, 64]> transpose_55 = transpose(perm = attn_output_5_perm_0, x = attn_output_3_cast)[name = tensor<string, []>("transpose_55")];
tensor<fp16, [1, 77, 768]> input_9_cast = reshape(shape = var_135, x = transpose_55)[name = tensor<string, []>("input_9_cast")];
tensor<fp16, [768, 768]> text_encoder_text_model_encoder_layers_0_self_attn_out_proj_weight_to_fp16_palettized = constexpr_lut_to_dense()[indices = tensor<uint8, [442368]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(77276032))), lut = tensor<fp16, [64]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(77718464))), name = tensor<string, []>("text_encoder_text_model_encoder_layers_0_self_attn_out_proj_weight_to_fp16_palettized"), shape = tensor<uint32, [2]>([768, 768])];
tensor<fp16, [768]> text_encoder_text_model_encoder_layers_0_self_attn_out_proj_bias_to_fp16 = const()[name = tensor<string, []>("text_encoder_text_model_encoder_layers_0_self_attn_out_proj_bias_to_fp16"), val = tensor<fp16, [768]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(77718656)))];
tensor<fp16, [1, 77, 768]> hidden_states_3_cast = linear(bias = text_encoder_text_model_encoder_layers_0_self_attn_out_proj_bias_to_fp16, weight = text_encoder_text_model_encoder_layers_0_self_attn_out_proj_weight_to_fp16_palettized, x = input_9_cast)[name = tensor<string, []>("hidden_states_3_cast")];
tensor<fp16, [1, 77, 768]> input_11_cast = add(x = input_3_cast, y = hidden_states_3_cast)[name = tensor<string, []>("input_11_cast")];
tensor<int32, [1]> input_13_axes_0 = const()[name = tensor<string, []>("input_13_axes_0"), val = tensor<int32, [1]>([-1])];
tensor<fp16, [768]> text_encoder_text_model_encoder_layers_0_layer_norm2_weight_to_fp16 = const()[name = tensor<string, []>("text_encoder_text_model_encoder_layers_0_layer_norm2_weight_to_fp16"), val = tensor<fp16, [768]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(77720256)))];
tensor<fp16, [768]> text_encoder_text_model_encoder_layers_0_layer_norm2_bias_to_fp16 = const()[name = tensor<string, []>("text_encoder_text_model_encoder_layers_0_layer_norm2_bias_to_fp16"), val = tensor<fp16, [768]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(77721856)))];
tensor<fp16, [1, 77, 768]> input_13_cast = layer_norm(axes = input_13_axes_0, beta = text_encoder_text_model_encoder_layers_0_layer_norm2_bias_to_fp16, epsilon = var_12_to_fp16, gamma = text_encoder_text_model_encoder_layers_0_layer_norm2_weight_to_fp16, x = input_11_cast)[name = tensor<string, []>("input_13_cast")];
tensor<fp16, [3072, 768]> text_encoder_text_model_encoder_layers_0_mlp_fc1_weight_to_fp16_palettized = constexpr_lut_to_dense()[indices = tensor<uint8, [1769472]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(77723456))), lut = tensor<fp16, [64]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(79492992))), name = tensor<string, []>("text_encoder_text_model_encoder_layers_0_mlp_fc1_weight_to_fp16_palettized"), shape = tensor<uint32, [2]>([3072, 768])];
tensor<fp16, [3072]> text_encoder_text_model_encoder_layers_0_mlp_fc1_bias_to_fp16_palettized = constexpr_lut_to_dense()[indices = tensor<uint8, [2304]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(79493184))), lut = tensor<fp16, [64]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(79495552))), name = tensor<string, []>("text_encoder_text_model_encoder_layers_0_mlp_fc1_bias_to_fp16_palettized"), shape = tensor<uint32, [1]>([3072])];
tensor<fp16, [1, 77, 3072]> input_15_cast = linear(bias = text_encoder_text_model_encoder_layers_0_mlp_fc1_bias_to_fp16_palettized, weight = text_encoder_text_model_encoder_layers_0_mlp_fc1_weight_to_fp16_palettized, x = input_13_cast)[name = tensor<string, []>("input_15_cast")];
tensor<fp16, []> var_150_to_fp16 = const()[name = tensor<string, []>("op_150_to_fp16"), val = tensor<fp16, []>(0x1.b3cp+0)];
tensor<fp16, [1, 77, 3072]> var_151_cast = mul(x = input_15_cast, y = var_150_to_fp16)[name = tensor<string, []>("op_151_cast")];
tensor<fp16, [1, 77, 3072]> var_152_cast = sigmoid(x = var_151_cast)[name = tensor<string, []>("op_152_cast")];
tensor<fp16, [1, 77, 3072]> input_17_cast = mul(x = input_15_cast, y = var_152_cast)[name = tensor<string, []>("input_17_cast")];
tensor<fp16, [768, 3072]> text_encoder_text_model_encoder_layers_0_mlp_fc2_weight_to_fp16_palettized = constexpr_lut_to_dense()[indices = tensor<uint8, [1769472]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(79495744))), lut = tensor<fp16, [64]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(81265280))), name = tensor<string, []>("text_encoder_text_model_encoder_layers_0_mlp_fc2_weight_to_fp16_palettized"), shape = tensor<uint32, [2]>([768, 3072])];
tensor<fp16, [768]> text_encoder_text_model_encoder_layers_0_mlp_fc2_bias_to_fp16 = const()[name = tensor<string, []>("text_encoder_text_model_encoder_layers_0_mlp_fc2_bias_to_fp16"), val = tensor<fp16, [768]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(81265472)))];
tensor<fp16, [1, 77, 768]> hidden_states_5_cast = linear(bias = text_encoder_text_model_encoder_layers_0_mlp_fc2_bias_to_fp16, weight = text_encoder_text_model_encoder_layers_0_mlp_fc2_weight_to_fp16_palettized, x = input_17_cast)[name = tensor<string, []>("hidden_states_5_cast")];
tensor<fp16, [1, 77, 768]> input_19_cast = add(x = input_11_cast, y = hidden_states_5_cast)[name = tensor<string, []>("input_19_cast")];
tensor<int32, [1]> hidden_states_7_axes_0 = const()[name = tensor<string, []>("hidden_states_7_axes_0"), val = tensor<int32, [1]>([-1])];
tensor<fp16, [768]> text_encoder_text_model_encoder_layers_1_layer_norm1_weight_to_fp16 = const()[name = tensor<string, []>("text_encoder_text_model_encoder_layers_1_layer_norm1_weight_to_fp16"), val = tensor<fp16, [768]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(81267072)))];
tensor<fp16, [768]> text_encoder_text_model_encoder_layers_1_layer_norm1_bias_to_fp16 = const()[name = tensor<string, []>("text_encoder_text_model_encoder_layers_1_layer_norm1_bias_to_fp16"), val = tensor<fp16, [768]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(81268672)))];
tensor<fp16, [1, 77, 768]> hidden_states_7_cast = layer_norm(axes = hidden_states_7_axes_0, beta = text_encoder_text_model_encoder_layers_1_layer_norm1_bias_to_fp16, epsilon = var_12_to_fp16, gamma = text_encoder_text_model_encoder_layers_1_layer_norm1_weight_to_fp16, x = input_19_cast)[name = tensor<string, []>("hidden_states_7_cast")];
tensor<fp16, [768, 768]> text_encoder_text_model_encoder_layers_1_self_attn_q_proj_weight_to_fp16_palettized = constexpr_lut_to_dense()[indices = tensor<uint8, [442368]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(81270272))), lut = tensor<fp16, [64]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(81712704))), name = tensor<string, []>("text_encoder_text_model_encoder_layers_1_self_attn_q_proj_weight_to_fp16_palettized"), shape = tensor<uint32, [2]>([768, 768])];
tensor<fp16, [768]> text_encoder_text_model_encoder_layers_1_self_attn_q_proj_bias_to_fp16 = const()[name = tensor<string, []>("text_encoder_text_model_encoder_layers_1_self_attn_q_proj_bias_to_fp16"), val = tensor<fp16, [768]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(81712896)))];
tensor<fp16, [1, 77, 768]> var_176_cast = linear(bias = text_encoder_text_model_encoder_layers_1_self_attn_q_proj_bias_to_fp16, weight = text_encoder_text_model_encoder_layers_1_self_attn_q_proj_weight_to_fp16_palettized, x = hidden_states_7_cast)[name = tensor<string, []>("op_176_cast")];
tensor<fp16, []> var_177_to_fp16 = const()[name = tensor<string, []>("op_177_to_fp16"), val = tensor<fp16, []>(0x1p-3)];
tensor<fp16, [1, 77, 768]> tensor_11_cast = mul(x = var_176_cast, y = var_177_to_fp16)[name = tensor<string, []>("tensor_11_cast")];
tensor<fp16, [768, 768]> text_encoder_text_model_encoder_layers_1_self_attn_k_proj_weight_to_fp16_palettized = constexpr_lut_to_dense()[indices = tensor<uint8, [442368]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(81714496))), lut = tensor<fp16, [64]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(82156928))), name = tensor<string, []>("text_encoder_text_model_encoder_layers_1_self_attn_k_proj_weight_to_fp16_palettized"), shape = tensor<uint32, [2]>([768, 768])];
tensor<fp16, [768]> text_encoder_text_model_encoder_layers_1_self_attn_k_proj_bias_to_fp16 = const()[name = tensor<string, []>("text_encoder_text_model_encoder_layers_1_self_attn_k_proj_bias_to_fp16"), val = tensor<fp16, [768]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(82157120)))];
tensor<fp16, [1, 77, 768]> tensor_7_cast = linear(bias = text_encoder_text_model_encoder_layers_1_self_attn_k_proj_bias_to_fp16, weight = text_encoder_text_model_encoder_layers_1_self_attn_k_proj_weight_to_fp16_palettized, x = hidden_states_7_cast)[name = tensor<string, []>("tensor_7_cast")];
tensor<int32, [4]> var_182 = const()[name = tensor<string, []>("op_182"), val = tensor<int32, [4]>([1, -1, 12, 64])];
tensor<fp16, [1, 77, 12, 64]> var_183_cast = reshape(shape = var_182, x = tensor_7_cast)[name = tensor<string, []>("op_183_cast")];
tensor<int32, [4]> var_184_perm_0 = const()[name = tensor<string, []>("op_184_perm_0"), val = tensor<int32, [4]>([0, 2, 1, 3])];
tensor<fp16, [768, 768]> text_encoder_text_model_encoder_layers_1_self_attn_v_proj_weight_to_fp16_palettized = constexpr_lut_to_dense()[indices = tensor<uint8, [442368]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(82158720))), lut = tensor<fp16, [64]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(82601152))), name = tensor<string, []>("text_encoder_text_model_encoder_layers_1_self_attn_v_proj_weight_to_fp16_palettized"), shape = tensor<uint32, [2]>([768, 768])];
tensor<fp16, [768]> text_encoder_text_model_encoder_layers_1_self_attn_v_proj_bias_to_fp16 = const()[name = tensor<string, []>("text_encoder_text_model_encoder_layers_1_self_attn_v_proj_bias_to_fp16"), val = tensor<fp16, [768]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(82601344)))];
tensor<fp16, [1, 77, 768]> tensor_9_cast = linear(bias = text_encoder_text_model_encoder_layers_1_self_attn_v_proj_bias_to_fp16, weight = text_encoder_text_model_encoder_layers_1_self_attn_v_proj_weight_to_fp16_palettized, x = hidden_states_7_cast)[name = tensor<string, []>("tensor_9_cast")];
tensor<int32, [4]> var_189 = const()[name = tensor<string, []>("op_189"), val = tensor<int32, [4]>([1, -1, 12, 64])];
tensor<fp16, [1, 77, 12, 64]> var_190_cast = reshape(shape = var_189, x = tensor_9_cast)[name = tensor<string, []>("op_190_cast")];
tensor<int32, [4]> var_191_perm_0 = const()[name = tensor<string, []>("op_191_perm_0"), val = tensor<int32, [4]>([0, 2, 1, 3])];
tensor<int32, [4]> var_198 = const()[name = tensor<string, []>("op_198"), val = tensor<int32, [4]>([1, 77, 12, 64])];
tensor<fp16, [1, 77, 12, 64]> var_199_cast = reshape(shape = var_198, x = tensor_11_cast)[name = tensor<string, []>("op_199_cast")];
tensor<int32, [4]> var_200_perm_0 = const()[name = tensor<string, []>("op_200_perm_0"), val = tensor<int32, [4]>([0, 2, 1, 3])];
tensor<int32, [3]> var_202 = const()[name = tensor<string, []>("op_202"), val = tensor<int32, [3]>([12, -1, 64])];
tensor<fp16, [1, 12, 77, 64]> transpose_54 = transpose(perm = var_200_perm_0, x = var_199_cast)[name = tensor<string, []>("transpose_54")];
tensor<fp16, [12, 77, 64]> query_states_3_cast = reshape(shape = var_202, x = transpose_54)[name = tensor<string, []>("query_states_3_cast")];
tensor<int32, [3]> var_204 = const()[name = tensor<string, []>("op_204"), val = tensor<int32, [3]>([12, -1, 64])];
tensor<fp16, [1, 12, 77, 64]> transpose_53 = transpose(perm = var_184_perm_0, x = var_183_cast)[name = tensor<string, []>("transpose_53")];
tensor<fp16, [12, 77, 64]> key_states_7_cast = reshape(shape = var_204, x = transpose_53)[name = tensor<string, []>("key_states_7_cast")];
tensor<int32, [3]> var_206 = const()[name = tensor<string, []>("op_206"), val = tensor<int32, [3]>([12, -1, 64])];
tensor<fp16, [1, 12, 77, 64]> transpose_52 = transpose(perm = var_191_perm_0, x = var_190_cast)[name = tensor<string, []>("transpose_52")];
tensor<fp16, [12, 77, 64]> value_states_7_cast = reshape(shape = var_206, x = transpose_52)[name = tensor<string, []>("value_states_7_cast")];
tensor<int32, [3]> var_209_perm_0 = const()[name = tensor<string, []>("op_209_perm_0"), val = tensor<int32, [3]>([0, 2, 1])];
tensor<bool, []> attn_weights_7_transpose_x_0 = const()[name = tensor<string, []>("attn_weights_7_transpose_x_0"), val = tensor<bool, []>(false)];
tensor<bool, []> attn_weights_7_transpose_y_0 = const()[name = tensor<string, []>("attn_weights_7_transpose_y_0"), val = tensor<bool, []>(false)];
tensor<fp16, [12, 64, 77]> transpose_51 = transpose(perm = var_209_perm_0, x = key_states_7_cast)[name = tensor<string, []>("transpose_51")];
tensor<fp16, [12, 77, 77]> attn_weights_7_cast = matmul(transpose_x = attn_weights_7_transpose_x_0, transpose_y = attn_weights_7_transpose_y_0, x = query_states_3_cast, y = transpose_51)[name = tensor<string, []>("attn_weights_7_cast")];
tensor<int32, [4]> var_211 = const()[name = tensor<string, []>("op_211"), val = tensor<int32, [4]>([1, 12, 77, 77])];
tensor<fp16, [1, 12, 77, 77]> var_212_cast = reshape(shape = var_211, x = attn_weights_7_cast)[name = tensor<string, []>("op_212_cast")];
tensor<fp16, [1, 12, 77, 77]> attn_weights_9_cast = add(x = var_212_cast, y = causal_attention_mask_to_fp16_palettized)[name = tensor<string, []>("attn_weights_9_cast")];
tensor<int32, [3]> var_217 = const()[name = tensor<string, []>("op_217"), val = tensor<int32, [3]>([12, 77, 77])];
tensor<fp16, [12, 77, 77]> input_21_cast = reshape(shape = var_217, x = attn_weights_9_cast)[name = tensor<string, []>("input_21_cast")];
tensor<fp16, [12, 77, 77]> input_23_cast = softmax(axis = var_5, x = input_21_cast)[name = tensor<string, []>("input_23_cast")];
tensor<bool, []> attn_output_7_transpose_x_0 = const()[name = tensor<string, []>("attn_output_7_transpose_x_0"), val = tensor<bool, []>(false)];
tensor<bool, []> attn_output_7_transpose_y_0 = const()[name = tensor<string, []>("attn_output_7_transpose_y_0"), val = tensor<bool, []>(false)];
tensor<fp16, [12, 77, 64]> attn_output_7_cast = matmul(transpose_x = attn_output_7_transpose_x_0, transpose_y = attn_output_7_transpose_y_0, x = input_23_cast, y = value_states_7_cast)[name = tensor<string, []>("attn_output_7_cast")];
tensor<int32, [4]> var_222 = const()[name = tensor<string, []>("op_222"), val = tensor<int32, [4]>([1, 12, 77, 64])];
tensor<fp16, [1, 12, 77, 64]> attn_output_9_cast = reshape(shape = var_222, x = attn_output_7_cast)[name = tensor<string, []>("attn_output_9_cast")];
tensor<int32, [4]> attn_output_11_perm_0 = const()[name = tensor<string, []>("attn_output_11_perm_0"), val = tensor<int32, [4]>([0, 2, 1, 3])];
tensor<int32, [3]> var_225 = const()[name = tensor<string, []>("op_225"), val = tensor<int32, [3]>([1, 77, 768])];
tensor<fp16, [1, 77, 12, 64]> transpose_50 = transpose(perm = attn_output_11_perm_0, x = attn_output_9_cast)[name = tensor<string, []>("transpose_50")];
tensor<fp16, [1, 77, 768]> input_25_cast = reshape(shape = var_225, x = transpose_50)[name = tensor<string, []>("input_25_cast")];
tensor<fp16, [768, 768]> text_encoder_text_model_encoder_layers_1_self_attn_out_proj_weight_to_fp16_palettized = constexpr_lut_to_dense()[indices = tensor<uint8, [442368]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(82602944))), lut = tensor<fp16, [64]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(83045376))), name = tensor<string, []>("text_encoder_text_model_encoder_layers_1_self_attn_out_proj_weight_to_fp16_palettized"), shape = tensor<uint32, [2]>([768, 768])];
tensor<fp16, [768]> text_encoder_text_model_encoder_layers_1_self_attn_out_proj_bias_to_fp16 = const()[name = tensor<string, []>("text_encoder_text_model_encoder_layers_1_self_attn_out_proj_bias_to_fp16"), val = tensor<fp16, [768]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(83045568)))];
tensor<fp16, [1, 77, 768]> hidden_states_9_cast = linear(bias = text_encoder_text_model_encoder_layers_1_self_attn_out_proj_bias_to_fp16, weight = text_encoder_text_model_encoder_layers_1_self_attn_out_proj_weight_to_fp16_palettized, x = input_25_cast)[name = tensor<string, []>("hidden_states_9_cast")];
tensor<fp16, [1, 77, 768]> input_27_cast = add(x = input_19_cast, y = hidden_states_9_cast)[name = tensor<string, []>("input_27_cast")];
tensor<int32, [1]> input_29_axes_0 = const()[name = tensor<string, []>("input_29_axes_0"), val = tensor<int32, [1]>([-1])];
tensor<fp16, [768]> text_encoder_text_model_encoder_layers_1_layer_norm2_weight_to_fp16 = const()[name = tensor<string, []>("text_encoder_text_model_encoder_layers_1_layer_norm2_weight_to_fp16"), val = tensor<fp16, [768]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(83047168)))];
tensor<fp16, [768]> text_encoder_text_model_encoder_layers_1_layer_norm2_bias_to_fp16 = const()[name = tensor<string, []>("text_encoder_text_model_encoder_layers_1_layer_norm2_bias_to_fp16"), val = tensor<fp16, [768]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(83048768)))];
tensor<fp16, [1, 77, 768]> input_29_cast = layer_norm(axes = input_29_axes_0, beta = text_encoder_text_model_encoder_layers_1_layer_norm2_bias_to_fp16, epsilon = var_12_to_fp16, gamma = text_encoder_text_model_encoder_layers_1_layer_norm2_weight_to_fp16, x = input_27_cast)[name = tensor<string, []>("input_29_cast")];
tensor<fp16, [3072, 768]> text_encoder_text_model_encoder_layers_1_mlp_fc1_weight_to_fp16_palettized = constexpr_lut_to_dense()[indices = tensor<uint8, [1769472]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(83050368))), lut = tensor<fp16, [64]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(84819904))), name = tensor<string, []>("text_encoder_text_model_encoder_layers_1_mlp_fc1_weight_to_fp16_palettized"), shape = tensor<uint32, [2]>([3072, 768])];
tensor<fp16, [3072]> text_encoder_text_model_encoder_layers_1_mlp_fc1_bias_to_fp16_palettized = constexpr_lut_to_dense()[indices = tensor<uint8, [2304]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(84820096))), lut = tensor<fp16, [64]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(84822464))), name = tensor<string, []>("text_encoder_text_model_encoder_layers_1_mlp_fc1_bias_to_fp16_palettized"), shape = tensor<uint32, [1]>([3072])];
tensor<fp16, [1, 77, 3072]> input_31_cast = linear(bias = text_encoder_text_model_encoder_layers_1_mlp_fc1_bias_to_fp16_palettized, weight = text_encoder_text_model_encoder_layers_1_mlp_fc1_weight_to_fp16_palettized, x = input_29_cast)[name = tensor<string, []>("input_31_cast")];
tensor<fp16, []> var_240_to_fp16 = const()[name = tensor<string, []>("op_240_to_fp16"), val = tensor<fp16, []>(0x1.b3cp+0)];
tensor<fp16, [1, 77, 3072]> var_241_cast = mul(x = input_31_cast, y = var_240_to_fp16)[name = tensor<string, []>("op_241_cast")];
tensor<fp16, [1, 77, 3072]> var_242_cast = sigmoid(x = var_241_cast)[name = tensor<string, []>("op_242_cast")];
tensor<fp16, [1, 77, 3072]> input_33_cast = mul(x = input_31_cast, y = var_242_cast)[name = tensor<string, []>("input_33_cast")];
tensor<fp16, [768, 3072]> text_encoder_text_model_encoder_layers_1_mlp_fc2_weight_to_fp16_palettized = constexpr_lut_to_dense()[indices = tensor<uint8, [1769472]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(84822656))), lut = tensor<fp16, [64]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(86592192))), name = tensor<string, []>("text_encoder_text_model_encoder_layers_1_mlp_fc2_weight_to_fp16_palettized"), shape = tensor<uint32, [2]>([768, 3072])];
tensor<fp16, [768]> text_encoder_text_model_encoder_layers_1_mlp_fc2_bias_to_fp16 = const()[name = tensor<string, []>("text_encoder_text_model_encoder_layers_1_mlp_fc2_bias_to_fp16"), val = tensor<fp16, [768]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(86592384)))];
tensor<fp16, [1, 77, 768]> hidden_states_11_cast = linear(bias = text_encoder_text_model_encoder_layers_1_mlp_fc2_bias_to_fp16, weight = text_encoder_text_model_encoder_layers_1_mlp_fc2_weight_to_fp16_palettized, x = input_33_cast)[name = tensor<string, []>("hidden_states_11_cast")];
tensor<fp16, [1, 77, 768]> input_35_cast = add(x = input_27_cast, y = hidden_states_11_cast)[name = tensor<string, []>("input_35_cast")];
tensor<int32, [1]> hidden_states_13_axes_0 = const()[name = tensor<string, []>("hidden_states_13_axes_0"), val = tensor<int32, [1]>([-1])];
tensor<fp16, [768]> text_encoder_text_model_encoder_layers_2_layer_norm1_weight_to_fp16 = const()[name = tensor<string, []>("text_encoder_text_model_encoder_layers_2_layer_norm1_weight_to_fp16"), val = tensor<fp16, [768]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(86593984)))];
tensor<fp16, [768]> text_encoder_text_model_encoder_layers_2_layer_norm1_bias_to_fp16 = const()[name = tensor<string, []>("text_encoder_text_model_encoder_layers_2_layer_norm1_bias_to_fp16"), val = tensor<fp16, [768]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(86595584)))];
tensor<fp16, [1, 77, 768]> hidden_states_13_cast = layer_norm(axes = hidden_states_13_axes_0, beta = text_encoder_text_model_encoder_layers_2_layer_norm1_bias_to_fp16, epsilon = var_12_to_fp16, gamma = text_encoder_text_model_encoder_layers_2_layer_norm1_weight_to_fp16, x = input_35_cast)[name = tensor<string, []>("hidden_states_13_cast")];
tensor<fp16, [768, 768]> text_encoder_text_model_encoder_layers_2_self_attn_q_proj_weight_to_fp16_palettized = constexpr_lut_to_dense()[indices = tensor<uint8, [442368]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(86597184))), lut = tensor<fp16, [64]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(87039616))), name = tensor<string, []>("text_encoder_text_model_encoder_layers_2_self_attn_q_proj_weight_to_fp16_palettized"), shape = tensor<uint32, [2]>([768, 768])];
tensor<fp16, [768]> text_encoder_text_model_encoder_layers_2_self_attn_q_proj_bias_to_fp16 = const()[name = tensor<string, []>("text_encoder_text_model_encoder_layers_2_self_attn_q_proj_bias_to_fp16"), val = tensor<fp16, [768]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(87039808)))];
tensor<fp16, [1, 77, 768]> var_266_cast = linear(bias = text_encoder_text_model_encoder_layers_2_self_attn_q_proj_bias_to_fp16, weight = text_encoder_text_model_encoder_layers_2_self_attn_q_proj_weight_to_fp16_palettized, x = hidden_states_13_cast)[name = tensor<string, []>("op_266_cast")];
tensor<fp16, []> var_267_to_fp16 = const()[name = tensor<string, []>("op_267_to_fp16"), val = tensor<fp16, []>(0x1p-3)];
tensor<fp16, [1, 77, 768]> tensor_17_cast = mul(x = var_266_cast, y = var_267_to_fp16)[name = tensor<string, []>("tensor_17_cast")];
tensor<fp16, [768, 768]> text_encoder_text_model_encoder_layers_2_self_attn_k_proj_weight_to_fp16_palettized = constexpr_lut_to_dense()[indices = tensor<uint8, [442368]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(87041408))), lut = tensor<fp16, [64]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(87483840))), name = tensor<string, []>("text_encoder_text_model_encoder_layers_2_self_attn_k_proj_weight_to_fp16_palettized"), shape = tensor<uint32, [2]>([768, 768])];
tensor<fp16, [768]> text_encoder_text_model_encoder_layers_2_self_attn_k_proj_bias_to_fp16 = const()[name = tensor<string, []>("text_encoder_text_model_encoder_layers_2_self_attn_k_proj_bias_to_fp16"), val = tensor<fp16, [768]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(87484032)))];
tensor<fp16, [1, 77, 768]> tensor_13_cast = linear(bias = text_encoder_text_model_encoder_layers_2_self_attn_k_proj_bias_to_fp16, weight = text_encoder_text_model_encoder_layers_2_self_attn_k_proj_weight_to_fp16_palettized, x = hidden_states_13_cast)[name = tensor<string, []>("tensor_13_cast")];
tensor<int32, [4]> var_272 = const()[name = tensor<string, []>("op_272"), val = tensor<int32, [4]>([1, -1, 12, 64])];
tensor<fp16, [1, 77, 12, 64]> var_273_cast = reshape(shape = var_272, x = tensor_13_cast)[name = tensor<string, []>("op_273_cast")];
tensor<int32, [4]> var_274_perm_0 = const()[name = tensor<string, []>("op_274_perm_0"), val = tensor<int32, [4]>([0, 2, 1, 3])];
tensor<fp16, [768, 768]> text_encoder_text_model_encoder_layers_2_self_attn_v_proj_weight_to_fp16_palettized = constexpr_lut_to_dense()[indices = tensor<uint8, [442368]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(87485632))), lut = tensor<fp16, [64]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(87928064))), name = tensor<string, []>("text_encoder_text_model_encoder_layers_2_self_attn_v_proj_weight_to_fp16_palettized"), shape = tensor<uint32, [2]>([768, 768])];
tensor<fp16, [768]> text_encoder_text_model_encoder_layers_2_self_attn_v_proj_bias_to_fp16 = const()[name = tensor<string, []>("text_encoder_text_model_encoder_layers_2_self_attn_v_proj_bias_to_fp16"), val = tensor<fp16, [768]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(87928256)))];
tensor<fp16, [1, 77, 768]> tensor_15_cast = linear(bias = text_encoder_text_model_encoder_layers_2_self_attn_v_proj_bias_to_fp16, weight = text_encoder_text_model_encoder_layers_2_self_attn_v_proj_weight_to_fp16_palettized, x = hidden_states_13_cast)[name = tensor<string, []>("tensor_15_cast")];
tensor<int32, [4]> var_279 = const()[name = tensor<string, []>("op_279"), val = tensor<int32, [4]>([1, -1, 12, 64])];
tensor<fp16, [1, 77, 12, 64]> var_280_cast = reshape(shape = var_279, x = tensor_15_cast)[name = tensor<string, []>("op_280_cast")];
tensor<int32, [4]> var_281_perm_0 = const()[name = tensor<string, []>("op_281_perm_0"), val = tensor<int32, [4]>([0, 2, 1, 3])];
tensor<int32, [4]> var_288 = const()[name = tensor<string, []>("op_288"), val = tensor<int32, [4]>([1, 77, 12, 64])];
tensor<fp16, [1, 77, 12, 64]> var_289_cast = reshape(shape = var_288, x = tensor_17_cast)[name = tensor<string, []>("op_289_cast")];
tensor<int32, [4]> var_290_perm_0 = const()[name = tensor<string, []>("op_290_perm_0"), val = tensor<int32, [4]>([0, 2, 1, 3])];
tensor<int32, [3]> var_292 = const()[name = tensor<string, []>("op_292"), val = tensor<int32, [3]>([12, -1, 64])];
tensor<fp16, [1, 12, 77, 64]> transpose_49 = transpose(perm = var_290_perm_0, x = var_289_cast)[name = tensor<string, []>("transpose_49")];
tensor<fp16, [12, 77, 64]> query_states_5_cast = reshape(shape = var_292, x = transpose_49)[name = tensor<string, []>("query_states_5_cast")];
tensor<int32, [3]> var_294 = const()[name = tensor<string, []>("op_294"), val = tensor<int32, [3]>([12, -1, 64])];
tensor<fp16, [1, 12, 77, 64]> transpose_48 = transpose(perm = var_274_perm_0, x = var_273_cast)[name = tensor<string, []>("transpose_48")];
tensor<fp16, [12, 77, 64]> key_states_11_cast = reshape(shape = var_294, x = transpose_48)[name = tensor<string, []>("key_states_11_cast")];
tensor<int32, [3]> var_296 = const()[name = tensor<string, []>("op_296"), val = tensor<int32, [3]>([12, -1, 64])];
tensor<fp16, [1, 12, 77, 64]> transpose_47 = transpose(perm = var_281_perm_0, x = var_280_cast)[name = tensor<string, []>("transpose_47")];
tensor<fp16, [12, 77, 64]> value_states_11_cast = reshape(shape = var_296, x = transpose_47)[name = tensor<string, []>("value_states_11_cast")];
tensor<int32, [3]> var_299_perm_0 = const()[name = tensor<string, []>("op_299_perm_0"), val = tensor<int32, [3]>([0, 2, 1])];
tensor<bool, []> attn_weights_13_transpose_x_0 = const()[name = tensor<string, []>("attn_weights_13_transpose_x_0"), val = tensor<bool, []>(false)];
tensor<bool, []> attn_weights_13_transpose_y_0 = const()[name = tensor<string, []>("attn_weights_13_transpose_y_0"), val = tensor<bool, []>(false)];
tensor<fp16, [12, 64, 77]> transpose_46 = transpose(perm = var_299_perm_0, x = key_states_11_cast)[name = tensor<string, []>("transpose_46")];
tensor<fp16, [12, 77, 77]> attn_weights_13_cast = matmul(transpose_x = attn_weights_13_transpose_x_0, transpose_y = attn_weights_13_transpose_y_0, x = query_states_5_cast, y = transpose_46)[name = tensor<string, []>("attn_weights_13_cast")];
tensor<int32, [4]> var_301 = const()[name = tensor<string, []>("op_301"), val = tensor<int32, [4]>([1, 12, 77, 77])];
tensor<fp16, [1, 12, 77, 77]> var_302_cast = reshape(shape = var_301, x = attn_weights_13_cast)[name = tensor<string, []>("op_302_cast")];
tensor<fp16, [1, 12, 77, 77]> attn_weights_15_cast = add(x = var_302_cast, y = causal_attention_mask_to_fp16_palettized)[name = tensor<string, []>("attn_weights_15_cast")];
tensor<int32, [3]> var_307 = const()[name = tensor<string, []>("op_307"), val = tensor<int32, [3]>([12, 77, 77])];
tensor<fp16, [12, 77, 77]> input_37_cast = reshape(shape = var_307, x = attn_weights_15_cast)[name = tensor<string, []>("input_37_cast")];
tensor<fp16, [12, 77, 77]> input_39_cast = softmax(axis = var_5, x = input_37_cast)[name = tensor<string, []>("input_39_cast")];
tensor<bool, []> attn_output_13_transpose_x_0 = const()[name = tensor<string, []>("attn_output_13_transpose_x_0"), val = tensor<bool, []>(false)];
tensor<bool, []> attn_output_13_transpose_y_0 = const()[name = tensor<string, []>("attn_output_13_transpose_y_0"), val = tensor<bool, []>(false)];
tensor<fp16, [12, 77, 64]> attn_output_13_cast = matmul(transpose_x = attn_output_13_transpose_x_0, transpose_y = attn_output_13_transpose_y_0, x = input_39_cast, y = value_states_11_cast)[name = tensor<string, []>("attn_output_13_cast")];
tensor<int32, [4]> var_312 = const()[name = tensor<string, []>("op_312"), val = tensor<int32, [4]>([1, 12, 77, 64])];
tensor<fp16, [1, 12, 77, 64]> attn_output_15_cast = reshape(shape = var_312, x = attn_output_13_cast)[name = tensor<string, []>("attn_output_15_cast")];
tensor<int32, [4]> attn_output_17_perm_0 = const()[name = tensor<string, []>("attn_output_17_perm_0"), val = tensor<int32, [4]>([0, 2, 1, 3])];
tensor<int32, [3]> var_315 = const()[name = tensor<string, []>("op_315"), val = tensor<int32, [3]>([1, 77, 768])];
tensor<fp16, [1, 77, 12, 64]> transpose_45 = transpose(perm = attn_output_17_perm_0, x = attn_output_15_cast)[name = tensor<string, []>("transpose_45")];
tensor<fp16, [1, 77, 768]> input_41_cast = reshape(shape = var_315, x = transpose_45)[name = tensor<string, []>("input_41_cast")];
tensor<fp16, [768, 768]> text_encoder_text_model_encoder_layers_2_self_attn_out_proj_weight_to_fp16_palettized = constexpr_lut_to_dense()[indices = tensor<uint8, [442368]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(87929856))), lut = tensor<fp16, [64]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(88372288))), name = tensor<string, []>("text_encoder_text_model_encoder_layers_2_self_attn_out_proj_weight_to_fp16_palettized"), shape = tensor<uint32, [2]>([768, 768])];
tensor<fp16, [768]> text_encoder_text_model_encoder_layers_2_self_attn_out_proj_bias_to_fp16 = const()[name = tensor<string, []>("text_encoder_text_model_encoder_layers_2_self_attn_out_proj_bias_to_fp16"), val = tensor<fp16, [768]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(88372480)))];
tensor<fp16, [1, 77, 768]> hidden_states_15_cast = linear(bias = text_encoder_text_model_encoder_layers_2_self_attn_out_proj_bias_to_fp16, weight = text_encoder_text_model_encoder_layers_2_self_attn_out_proj_weight_to_fp16_palettized, x = input_41_cast)[name = tensor<string, []>("hidden_states_15_cast")];
tensor<fp16, [1, 77, 768]> input_43_cast = add(x = input_35_cast, y = hidden_states_15_cast)[name = tensor<string, []>("input_43_cast")];
tensor<int32, [1]> input_45_axes_0 = const()[name = tensor<string, []>("input_45_axes_0"), val = tensor<int32, [1]>([-1])];
tensor<fp16, [768]> text_encoder_text_model_encoder_layers_2_layer_norm2_weight_to_fp16 = const()[name = tensor<string, []>("text_encoder_text_model_encoder_layers_2_layer_norm2_weight_to_fp16"), val = tensor<fp16, [768]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(88374080)))];
tensor<fp16, [768]> text_encoder_text_model_encoder_layers_2_layer_norm2_bias_to_fp16 = const()[name = tensor<string, []>("text_encoder_text_model_encoder_layers_2_layer_norm2_bias_to_fp16"), val = tensor<fp16, [768]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(88375680)))];
tensor<fp16, [1, 77, 768]> input_45_cast = layer_norm(axes = input_45_axes_0, beta = text_encoder_text_model_encoder_layers_2_layer_norm2_bias_to_fp16, epsilon = var_12_to_fp16, gamma = text_encoder_text_model_encoder_layers_2_layer_norm2_weight_to_fp16, x = input_43_cast)[name = tensor<string, []>("input_45_cast")];
tensor<fp16, [3072, 768]> text_encoder_text_model_encoder_layers_2_mlp_fc1_weight_to_fp16_palettized = constexpr_lut_to_dense()[indices = tensor<uint8, [1769472]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(88377280))), lut = tensor<fp16, [64]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(90146816))), name = tensor<string, []>("text_encoder_text_model_encoder_layers_2_mlp_fc1_weight_to_fp16_palettized"), shape = tensor<uint32, [2]>([3072, 768])];
tensor<fp16, [3072]> text_encoder_text_model_encoder_layers_2_mlp_fc1_bias_to_fp16_palettized = constexpr_lut_to_dense()[indices = tensor<uint8, [2304]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(90147008))), lut = tensor<fp16, [64]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(90149376))), name = tensor<string, []>("text_encoder_text_model_encoder_layers_2_mlp_fc1_bias_to_fp16_palettized"), shape = tensor<uint32, [1]>([3072])];
tensor<fp16, [1, 77, 3072]> input_47_cast = linear(bias = text_encoder_text_model_encoder_layers_2_mlp_fc1_bias_to_fp16_palettized, weight = text_encoder_text_model_encoder_layers_2_mlp_fc1_weight_to_fp16_palettized, x = input_45_cast)[name = tensor<string, []>("input_47_cast")];
tensor<fp16, []> var_330_to_fp16 = const()[name = tensor<string, []>("op_330_to_fp16"), val = tensor<fp16, []>(0x1.b3cp+0)];
tensor<fp16, [1, 77, 3072]> var_331_cast = mul(x = input_47_cast, y = var_330_to_fp16)[name = tensor<string, []>("op_331_cast")];
tensor<fp16, [1, 77, 3072]> var_332_cast = sigmoid(x = var_331_cast)[name = tensor<string, []>("op_332_cast")];
tensor<fp16, [1, 77, 3072]> input_49_cast = mul(x = input_47_cast, y = var_332_cast)[name = tensor<string, []>("input_49_cast")];
tensor<fp16, [768, 3072]> text_encoder_text_model_encoder_layers_2_mlp_fc2_weight_to_fp16_palettized = constexpr_lut_to_dense()[indices = tensor<uint8, [1769472]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(90149568))), lut = tensor<fp16, [64]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(91919104))), name = tensor<string, []>("text_encoder_text_model_encoder_layers_2_mlp_fc2_weight_to_fp16_palettized"), shape = tensor<uint32, [2]>([768, 3072])];
tensor<fp16, [768]> text_encoder_text_model_encoder_layers_2_mlp_fc2_bias_to_fp16 = const()[name = tensor<string, []>("text_encoder_text_model_encoder_layers_2_mlp_fc2_bias_to_fp16"), val = tensor<fp16, [768]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(91919296)))];
tensor<fp16, [1, 77, 768]> hidden_states_17_cast = linear(bias = text_encoder_text_model_encoder_layers_2_mlp_fc2_bias_to_fp16, weight = text_encoder_text_model_encoder_layers_2_mlp_fc2_weight_to_fp16_palettized, x = input_49_cast)[name = tensor<string, []>("hidden_states_17_cast")];
tensor<fp16, [1, 77, 768]> input_51_cast = add(x = input_43_cast, y = hidden_states_17_cast)[name = tensor<string, []>("input_51_cast")];
tensor<int32, [1]> hidden_states_19_axes_0 = const()[name = tensor<string, []>("hidden_states_19_axes_0"), val = tensor<int32, [1]>([-1])];
tensor<fp16, [768]> text_encoder_text_model_encoder_layers_3_layer_norm1_weight_to_fp16 = const()[name = tensor<string, []>("text_encoder_text_model_encoder_layers_3_layer_norm1_weight_to_fp16"), val = tensor<fp16, [768]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(91920896)))];
tensor<fp16, [768]> text_encoder_text_model_encoder_layers_3_layer_norm1_bias_to_fp16 = const()[name = tensor<string, []>("text_encoder_text_model_encoder_layers_3_layer_norm1_bias_to_fp16"), val = tensor<fp16, [768]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(91922496)))];
tensor<fp16, [1, 77, 768]> hidden_states_19_cast = layer_norm(axes = hidden_states_19_axes_0, beta = text_encoder_text_model_encoder_layers_3_layer_norm1_bias_to_fp16, epsilon = var_12_to_fp16, gamma = text_encoder_text_model_encoder_layers_3_layer_norm1_weight_to_fp16, x = input_51_cast)[name = tensor<string, []>("hidden_states_19_cast")];
tensor<fp16, [768, 768]> text_encoder_text_model_encoder_layers_3_self_attn_q_proj_weight_to_fp16_palettized = constexpr_lut_to_dense()[indices = tensor<uint8, [442368]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(91924096))), lut = tensor<fp16, [64]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(92366528))), name = tensor<string, []>("text_encoder_text_model_encoder_layers_3_self_attn_q_proj_weight_to_fp16_palettized"), shape = tensor<uint32, [2]>([768, 768])];
tensor<fp16, [768]> text_encoder_text_model_encoder_layers_3_self_attn_q_proj_bias_to_fp16 = const()[name = tensor<string, []>("text_encoder_text_model_encoder_layers_3_self_attn_q_proj_bias_to_fp16"), val = tensor<fp16, [768]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(92366720)))];
tensor<fp16, [1, 77, 768]> var_356_cast = linear(bias = text_encoder_text_model_encoder_layers_3_self_attn_q_proj_bias_to_fp16, weight = text_encoder_text_model_encoder_layers_3_self_attn_q_proj_weight_to_fp16_palettized, x = hidden_states_19_cast)[name = tensor<string, []>("op_356_cast")];
tensor<fp16, []> var_357_to_fp16 = const()[name = tensor<string, []>("op_357_to_fp16"), val = tensor<fp16, []>(0x1p-3)];
tensor<fp16, [1, 77, 768]> tensor_23_cast = mul(x = var_356_cast, y = var_357_to_fp16)[name = tensor<string, []>("tensor_23_cast")];
tensor<fp16, [768, 768]> text_encoder_text_model_encoder_layers_3_self_attn_k_proj_weight_to_fp16_palettized = constexpr_lut_to_dense()[indices = tensor<uint8, [442368]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(92368320))), lut = tensor<fp16, [64]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(92810752))), name = tensor<string, []>("text_encoder_text_model_encoder_layers_3_self_attn_k_proj_weight_to_fp16_palettized"), shape = tensor<uint32, [2]>([768, 768])];
tensor<fp16, [768]> text_encoder_text_model_encoder_layers_3_self_attn_k_proj_bias_to_fp16 = const()[name = tensor<string, []>("text_encoder_text_model_encoder_layers_3_self_attn_k_proj_bias_to_fp16"), val = tensor<fp16, [768]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(92810944)))];
tensor<fp16, [1, 77, 768]> tensor_19_cast = linear(bias = text_encoder_text_model_encoder_layers_3_self_attn_k_proj_bias_to_fp16, weight = text_encoder_text_model_encoder_layers_3_self_attn_k_proj_weight_to_fp16_palettized, x = hidden_states_19_cast)[name = tensor<string, []>("tensor_19_cast")];
tensor<int32, [4]> var_362 = const()[name = tensor<string, []>("op_362"), val = tensor<int32, [4]>([1, -1, 12, 64])];
tensor<fp16, [1, 77, 12, 64]> var_363_cast = reshape(shape = var_362, x = tensor_19_cast)[name = tensor<string, []>("op_363_cast")];
tensor<int32, [4]> var_364_perm_0 = const()[name = tensor<string, []>("op_364_perm_0"), val = tensor<int32, [4]>([0, 2, 1, 3])];
tensor<fp16, [768, 768]> text_encoder_text_model_encoder_layers_3_self_attn_v_proj_weight_to_fp16_palettized = constexpr_lut_to_dense()[indices = tensor<uint8, [442368]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(92812544))), lut = tensor<fp16, [64]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(93254976))), name = tensor<string, []>("text_encoder_text_model_encoder_layers_3_self_attn_v_proj_weight_to_fp16_palettized"), shape = tensor<uint32, [2]>([768, 768])];
tensor<fp16, [768]> text_encoder_text_model_encoder_layers_3_self_attn_v_proj_bias_to_fp16 = const()[name = tensor<string, []>("text_encoder_text_model_encoder_layers_3_self_attn_v_proj_bias_to_fp16"), val = tensor<fp16, [768]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(93255168)))];
tensor<fp16, [1, 77, 768]> tensor_21_cast = linear(bias = text_encoder_text_model_encoder_layers_3_self_attn_v_proj_bias_to_fp16, weight = text_encoder_text_model_encoder_layers_3_self_attn_v_proj_weight_to_fp16_palettized, x = hidden_states_19_cast)[name = tensor<string, []>("tensor_21_cast")];
tensor<int32, [4]> var_369 = const()[name = tensor<string, []>("op_369"), val = tensor<int32, [4]>([1, -1, 12, 64])];
tensor<fp16, [1, 77, 12, 64]> var_370_cast = reshape(shape = var_369, x = tensor_21_cast)[name = tensor<string, []>("op_370_cast")];
tensor<int32, [4]> var_371_perm_0 = const()[name = tensor<string, []>("op_371_perm_0"), val = tensor<int32, [4]>([0, 2, 1, 3])];
tensor<int32, [4]> var_378 = const()[name = tensor<string, []>("op_378"), val = tensor<int32, [4]>([1, 77, 12, 64])];
tensor<fp16, [1, 77, 12, 64]> var_379_cast = reshape(shape = var_378, x = tensor_23_cast)[name = tensor<string, []>("op_379_cast")];
tensor<int32, [4]> var_380_perm_0 = const()[name = tensor<string, []>("op_380_perm_0"), val = tensor<int32, [4]>([0, 2, 1, 3])];
tensor<int32, [3]> var_382 = const()[name = tensor<string, []>("op_382"), val = tensor<int32, [3]>([12, -1, 64])];
tensor<fp16, [1, 12, 77, 64]> transpose_44 = transpose(perm = var_380_perm_0, x = var_379_cast)[name = tensor<string, []>("transpose_44")];
tensor<fp16, [12, 77, 64]> query_states_7_cast = reshape(shape = var_382, x = transpose_44)[name = tensor<string, []>("query_states_7_cast")];
tensor<int32, [3]> var_384 = const()[name = tensor<string, []>("op_384"), val = tensor<int32, [3]>([12, -1, 64])];
tensor<fp16, [1, 12, 77, 64]> transpose_43 = transpose(perm = var_364_perm_0, x = var_363_cast)[name = tensor<string, []>("transpose_43")];
tensor<fp16, [12, 77, 64]> key_states_15_cast = reshape(shape = var_384, x = transpose_43)[name = tensor<string, []>("key_states_15_cast")];
tensor<int32, [3]> var_386 = const()[name = tensor<string, []>("op_386"), val = tensor<int32, [3]>([12, -1, 64])];
tensor<fp16, [1, 12, 77, 64]> transpose_42 = transpose(perm = var_371_perm_0, x = var_370_cast)[name = tensor<string, []>("transpose_42")];
tensor<fp16, [12, 77, 64]> value_states_15_cast = reshape(shape = var_386, x = transpose_42)[name = tensor<string, []>("value_states_15_cast")];
tensor<int32, [3]> var_389_perm_0 = const()[name = tensor<string, []>("op_389_perm_0"), val = tensor<int32, [3]>([0, 2, 1])];
tensor<bool, []> attn_weights_19_transpose_x_0 = const()[name = tensor<string, []>("attn_weights_19_transpose_x_0"), val = tensor<bool, []>(false)];
tensor<bool, []> attn_weights_19_transpose_y_0 = const()[name = tensor<string, []>("attn_weights_19_transpose_y_0"), val = tensor<bool, []>(false)];
tensor<fp16, [12, 64, 77]> transpose_41 = transpose(perm = var_389_perm_0, x = key_states_15_cast)[name = tensor<string, []>("transpose_41")];
tensor<fp16, [12, 77, 77]> attn_weights_19_cast = matmul(transpose_x = attn_weights_19_transpose_x_0, transpose_y = attn_weights_19_transpose_y_0, x = query_states_7_cast, y = transpose_41)[name = tensor<string, []>("attn_weights_19_cast")];
tensor<int32, [4]> var_391 = const()[name = tensor<string, []>("op_391"), val = tensor<int32, [4]>([1, 12, 77, 77])];
tensor<fp16, [1, 12, 77, 77]> var_392_cast = reshape(shape = var_391, x = attn_weights_19_cast)[name = tensor<string, []>("op_392_cast")];
tensor<fp16, [1, 12, 77, 77]> attn_weights_21_cast = add(x = var_392_cast, y = causal_attention_mask_to_fp16_palettized)[name = tensor<string, []>("attn_weights_21_cast")];
tensor<int32, [3]> var_397 = const()[name = tensor<string, []>("op_397"), val = tensor<int32, [3]>([12, 77, 77])];
tensor<fp16, [12, 77, 77]> input_53_cast = reshape(shape = var_397, x = attn_weights_21_cast)[name = tensor<string, []>("input_53_cast")];
tensor<fp16, [12, 77, 77]> input_55_cast = softmax(axis = var_5, x = input_53_cast)[name = tensor<string, []>("input_55_cast")];
tensor<bool, []> attn_output_19_transpose_x_0 = const()[name = tensor<string, []>("attn_output_19_transpose_x_0"), val = tensor<bool, []>(false)];
tensor<bool, []> attn_output_19_transpose_y_0 = const()[name = tensor<string, []>("attn_output_19_transpose_y_0"), val = tensor<bool, []>(false)];
tensor<fp16, [12, 77, 64]> attn_output_19_cast = matmul(transpose_x = attn_output_19_transpose_x_0, transpose_y = attn_output_19_transpose_y_0, x = input_55_cast, y = value_states_15_cast)[name = tensor<string, []>("attn_output_19_cast")];
tensor<int32, [4]> var_402 = const()[name = tensor<string, []>("op_402"), val = tensor<int32, [4]>([1, 12, 77, 64])];
tensor<fp16, [1, 12, 77, 64]> attn_output_21_cast = reshape(shape = var_402, x = attn_output_19_cast)[name = tensor<string, []>("attn_output_21_cast")];
tensor<int32, [4]> attn_output_23_perm_0 = const()[name = tensor<string, []>("attn_output_23_perm_0"), val = tensor<int32, [4]>([0, 2, 1, 3])];
tensor<int32, [3]> var_405 = const()[name = tensor<string, []>("op_405"), val = tensor<int32, [3]>([1, 77, 768])];
tensor<fp16, [1, 77, 12, 64]> transpose_40 = transpose(perm = attn_output_23_perm_0, x = attn_output_21_cast)[name = tensor<string, []>("transpose_40")];
tensor<fp16, [1, 77, 768]> input_57_cast = reshape(shape = var_405, x = transpose_40)[name = tensor<string, []>("input_57_cast")];
tensor<fp16, [768, 768]> text_encoder_text_model_encoder_layers_3_self_attn_out_proj_weight_to_fp16_palettized = constexpr_lut_to_dense()[indices = tensor<uint8, [442368]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(93256768))), lut = tensor<fp16, [64]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(93699200))), name = tensor<string, []>("text_encoder_text_model_encoder_layers_3_self_attn_out_proj_weight_to_fp16_palettized"), shape = tensor<uint32, [2]>([768, 768])];
tensor<fp16, [768]> text_encoder_text_model_encoder_layers_3_self_attn_out_proj_bias_to_fp16 = const()[name = tensor<string, []>("text_encoder_text_model_encoder_layers_3_self_attn_out_proj_bias_to_fp16"), val = tensor<fp16, [768]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(93699392)))];
tensor<fp16, [1, 77, 768]> hidden_states_21_cast = linear(bias = text_encoder_text_model_encoder_layers_3_self_attn_out_proj_bias_to_fp16, weight = text_encoder_text_model_encoder_layers_3_self_attn_out_proj_weight_to_fp16_palettized, x = input_57_cast)[name = tensor<string, []>("hidden_states_21_cast")];
tensor<fp16, [1, 77, 768]> input_59_cast = add(x = input_51_cast, y = hidden_states_21_cast)[name = tensor<string, []>("input_59_cast")];
tensor<int32, [1]> input_61_axes_0 = const()[name = tensor<string, []>("input_61_axes_0"), val = tensor<int32, [1]>([-1])];
tensor<fp16, [768]> text_encoder_text_model_encoder_layers_3_layer_norm2_weight_to_fp16 = const()[name = tensor<string, []>("text_encoder_text_model_encoder_layers_3_layer_norm2_weight_to_fp16"), val = tensor<fp16, [768]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(93700992)))];
tensor<fp16, [768]> text_encoder_text_model_encoder_layers_3_layer_norm2_bias_to_fp16 = const()[name = tensor<string, []>("text_encoder_text_model_encoder_layers_3_layer_norm2_bias_to_fp16"), val = tensor<fp16, [768]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(93702592)))];
tensor<fp16, [1, 77, 768]> input_61_cast = layer_norm(axes = input_61_axes_0, beta = text_encoder_text_model_encoder_layers_3_layer_norm2_bias_to_fp16, epsilon = var_12_to_fp16, gamma = text_encoder_text_model_encoder_layers_3_layer_norm2_weight_to_fp16, x = input_59_cast)[name = tensor<string, []>("input_61_cast")];
tensor<fp16, [3072, 768]> text_encoder_text_model_encoder_layers_3_mlp_fc1_weight_to_fp16_palettized = constexpr_lut_to_dense()[indices = tensor<uint8, [1769472]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(93704192))), lut = tensor<fp16, [64]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(95473728))), name = tensor<string, []>("text_encoder_text_model_encoder_layers_3_mlp_fc1_weight_to_fp16_palettized"), shape = tensor<uint32, [2]>([3072, 768])];
tensor<fp16, [3072]> text_encoder_text_model_encoder_layers_3_mlp_fc1_bias_to_fp16_palettized = constexpr_lut_to_dense()[indices = tensor<uint8, [2304]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(95473920))), lut = tensor<fp16, [64]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(95476288))), name = tensor<string, []>("text_encoder_text_model_encoder_layers_3_mlp_fc1_bias_to_fp16_palettized"), shape = tensor<uint32, [1]>([3072])];
tensor<fp16, [1, 77, 3072]> input_63_cast = linear(bias = text_encoder_text_model_encoder_layers_3_mlp_fc1_bias_to_fp16_palettized, weight = text_encoder_text_model_encoder_layers_3_mlp_fc1_weight_to_fp16_palettized, x = input_61_cast)[name = tensor<string, []>("input_63_cast")];
tensor<fp16, []> var_420_to_fp16 = const()[name = tensor<string, []>("op_420_to_fp16"), val = tensor<fp16, []>(0x1.b3cp+0)];
tensor<fp16, [1, 77, 3072]> var_421_cast = mul(x = input_63_cast, y = var_420_to_fp16)[name = tensor<string, []>("op_421_cast")];
tensor<fp16, [1, 77, 3072]> var_422_cast = sigmoid(x = var_421_cast)[name = tensor<string, []>("op_422_cast")];
tensor<fp16, [1, 77, 3072]> input_65_cast = mul(x = input_63_cast, y = var_422_cast)[name = tensor<string, []>("input_65_cast")];
tensor<fp16, [768, 3072]> text_encoder_text_model_encoder_layers_3_mlp_fc2_weight_to_fp16_palettized = constexpr_lut_to_dense()[indices = tensor<uint8, [1769472]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(95476480))), lut = tensor<fp16, [64]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(97246016))), name = tensor<string, []>("text_encoder_text_model_encoder_layers_3_mlp_fc2_weight_to_fp16_palettized"), shape = tensor<uint32, [2]>([768, 3072])];
tensor<fp16, [768]> text_encoder_text_model_encoder_layers_3_mlp_fc2_bias_to_fp16 = const()[name = tensor<string, []>("text_encoder_text_model_encoder_layers_3_mlp_fc2_bias_to_fp16"), val = tensor<fp16, [768]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(97246208)))];
tensor<fp16, [1, 77, 768]> hidden_states_23_cast = linear(bias = text_encoder_text_model_encoder_layers_3_mlp_fc2_bias_to_fp16, weight = text_encoder_text_model_encoder_layers_3_mlp_fc2_weight_to_fp16_palettized, x = input_65_cast)[name = tensor<string, []>("hidden_states_23_cast")];
tensor<fp16, [1, 77, 768]> input_67_cast = add(x = input_59_cast, y = hidden_states_23_cast)[name = tensor<string, []>("input_67_cast")];
tensor<int32, [1]> hidden_states_25_axes_0 = const()[name = tensor<string, []>("hidden_states_25_axes_0"), val = tensor<int32, [1]>([-1])];
tensor<fp16, [768]> text_encoder_text_model_encoder_layers_4_layer_norm1_weight_to_fp16 = const()[name = tensor<string, []>("text_encoder_text_model_encoder_layers_4_layer_norm1_weight_to_fp16"), val = tensor<fp16, [768]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(97247808)))];
tensor<fp16, [768]> text_encoder_text_model_encoder_layers_4_layer_norm1_bias_to_fp16 = const()[name = tensor<string, []>("text_encoder_text_model_encoder_layers_4_layer_norm1_bias_to_fp16"), val = tensor<fp16, [768]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(97249408)))];
tensor<fp16, [1, 77, 768]> hidden_states_25_cast = layer_norm(axes = hidden_states_25_axes_0, beta = text_encoder_text_model_encoder_layers_4_layer_norm1_bias_to_fp16, epsilon = var_12_to_fp16, gamma = text_encoder_text_model_encoder_layers_4_layer_norm1_weight_to_fp16, x = input_67_cast)[name = tensor<string, []>("hidden_states_25_cast")];
tensor<fp16, [768, 768]> text_encoder_text_model_encoder_layers_4_self_attn_q_proj_weight_to_fp16_palettized = constexpr_lut_to_dense()[indices = tensor<uint8, [442368]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(97251008))), lut = tensor<fp16, [64]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(97693440))), name = tensor<string, []>("text_encoder_text_model_encoder_layers_4_self_attn_q_proj_weight_to_fp16_palettized"), shape = tensor<uint32, [2]>([768, 768])];
tensor<fp16, [768]> text_encoder_text_model_encoder_layers_4_self_attn_q_proj_bias_to_fp16 = const()[name = tensor<string, []>("text_encoder_text_model_encoder_layers_4_self_attn_q_proj_bias_to_fp16"), val = tensor<fp16, [768]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(97693632)))];
tensor<fp16, [1, 77, 768]> var_446_cast = linear(bias = text_encoder_text_model_encoder_layers_4_self_attn_q_proj_bias_to_fp16, weight = text_encoder_text_model_encoder_layers_4_self_attn_q_proj_weight_to_fp16_palettized, x = hidden_states_25_cast)[name = tensor<string, []>("op_446_cast")];
tensor<fp16, []> var_447_to_fp16 = const()[name = tensor<string, []>("op_447_to_fp16"), val = tensor<fp16, []>(0x1p-3)];
tensor<fp16, [1, 77, 768]> tensor_29_cast = mul(x = var_446_cast, y = var_447_to_fp16)[name = tensor<string, []>("tensor_29_cast")];
tensor<fp16, [768, 768]> text_encoder_text_model_encoder_layers_4_self_attn_k_proj_weight_to_fp16_palettized = constexpr_lut_to_dense()[indices = tensor<uint8, [442368]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(97695232))), lut = tensor<fp16, [64]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(98137664))), name = tensor<string, []>("text_encoder_text_model_encoder_layers_4_self_attn_k_proj_weight_to_fp16_palettized"), shape = tensor<uint32, [2]>([768, 768])];
tensor<fp16, [768]> text_encoder_text_model_encoder_layers_4_self_attn_k_proj_bias_to_fp16 = const()[name = tensor<string, []>("text_encoder_text_model_encoder_layers_4_self_attn_k_proj_bias_to_fp16"), val = tensor<fp16, [768]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(98137856)))];
tensor<fp16, [1, 77, 768]> tensor_25_cast = linear(bias = text_encoder_text_model_encoder_layers_4_self_attn_k_proj_bias_to_fp16, weight = text_encoder_text_model_encoder_layers_4_self_attn_k_proj_weight_to_fp16_palettized, x = hidden_states_25_cast)[name = tensor<string, []>("tensor_25_cast")];
tensor<int32, [4]> var_452 = const()[name = tensor<string, []>("op_452"), val = tensor<int32, [4]>([1, -1, 12, 64])];
tensor<fp16, [1, 77, 12, 64]> var_453_cast = reshape(shape = var_452, x = tensor_25_cast)[name = tensor<string, []>("op_453_cast")];
tensor<int32, [4]> var_454_perm_0 = const()[name = tensor<string, []>("op_454_perm_0"), val = tensor<int32, [4]>([0, 2, 1, 3])];
tensor<fp16, [768, 768]> text_encoder_text_model_encoder_layers_4_self_attn_v_proj_weight_to_fp16_palettized = constexpr_lut_to_dense()[indices = tensor<uint8, [442368]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(98139456))), lut = tensor<fp16, [64]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(98581888))), name = tensor<string, []>("text_encoder_text_model_encoder_layers_4_self_attn_v_proj_weight_to_fp16_palettized"), shape = tensor<uint32, [2]>([768, 768])];
tensor<fp16, [768]> text_encoder_text_model_encoder_layers_4_self_attn_v_proj_bias_to_fp16 = const()[name = tensor<string, []>("text_encoder_text_model_encoder_layers_4_self_attn_v_proj_bias_to_fp16"), val = tensor<fp16, [768]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(98582080)))];
tensor<fp16, [1, 77, 768]> tensor_27_cast = linear(bias = text_encoder_text_model_encoder_layers_4_self_attn_v_proj_bias_to_fp16, weight = text_encoder_text_model_encoder_layers_4_self_attn_v_proj_weight_to_fp16_palettized, x = hidden_states_25_cast)[name = tensor<string, []>("tensor_27_cast")];
tensor<int32, [4]> var_459 = const()[name = tensor<string, []>("op_459"), val = tensor<int32, [4]>([1, -1, 12, 64])];
tensor<fp16, [1, 77, 12, 64]> var_460_cast = reshape(shape = var_459, x = tensor_27_cast)[name = tensor<string, []>("op_460_cast")];
tensor<int32, [4]> var_461_perm_0 = const()[name = tensor<string, []>("op_461_perm_0"), val = tensor<int32, [4]>([0, 2, 1, 3])];
tensor<int32, [4]> var_468 = const()[name = tensor<string, []>("op_468"), val = tensor<int32, [4]>([1, 77, 12, 64])];
tensor<fp16, [1, 77, 12, 64]> var_469_cast = reshape(shape = var_468, x = tensor_29_cast)[name = tensor<string, []>("op_469_cast")];
tensor<int32, [4]> var_470_perm_0 = const()[name = tensor<string, []>("op_470_perm_0"), val = tensor<int32, [4]>([0, 2, 1, 3])];
tensor<int32, [3]> var_472 = const()[name = tensor<string, []>("op_472"), val = tensor<int32, [3]>([12, -1, 64])];
tensor<fp16, [1, 12, 77, 64]> transpose_39 = transpose(perm = var_470_perm_0, x = var_469_cast)[name = tensor<string, []>("transpose_39")];
tensor<fp16, [12, 77, 64]> query_states_9_cast = reshape(shape = var_472, x = transpose_39)[name = tensor<string, []>("query_states_9_cast")];
tensor<int32, [3]> var_474 = const()[name = tensor<string, []>("op_474"), val = tensor<int32, [3]>([12, -1, 64])];
tensor<fp16, [1, 12, 77, 64]> transpose_38 = transpose(perm = var_454_perm_0, x = var_453_cast)[name = tensor<string, []>("transpose_38")];
tensor<fp16, [12, 77, 64]> key_states_19_cast = reshape(shape = var_474, x = transpose_38)[name = tensor<string, []>("key_states_19_cast")];
tensor<int32, [3]> var_476 = const()[name = tensor<string, []>("op_476"), val = tensor<int32, [3]>([12, -1, 64])];
tensor<fp16, [1, 12, 77, 64]> transpose_37 = transpose(perm = var_461_perm_0, x = var_460_cast)[name = tensor<string, []>("transpose_37")];
tensor<fp16, [12, 77, 64]> value_states_19_cast = reshape(shape = var_476, x = transpose_37)[name = tensor<string, []>("value_states_19_cast")];
tensor<int32, [3]> var_479_perm_0 = const()[name = tensor<string, []>("op_479_perm_0"), val = tensor<int32, [3]>([0, 2, 1])];
tensor<bool, []> attn_weights_25_transpose_x_0 = const()[name = tensor<string, []>("attn_weights_25_transpose_x_0"), val = tensor<bool, []>(false)];
tensor<bool, []> attn_weights_25_transpose_y_0 = const()[name = tensor<string, []>("attn_weights_25_transpose_y_0"), val = tensor<bool, []>(false)];
tensor<fp16, [12, 64, 77]> transpose_36 = transpose(perm = var_479_perm_0, x = key_states_19_cast)[name = tensor<string, []>("transpose_36")];
tensor<fp16, [12, 77, 77]> attn_weights_25_cast = matmul(transpose_x = attn_weights_25_transpose_x_0, transpose_y = attn_weights_25_transpose_y_0, x = query_states_9_cast, y = transpose_36)[name = tensor<string, []>("attn_weights_25_cast")];
tensor<int32, [4]> var_481 = const()[name = tensor<string, []>("op_481"), val = tensor<int32, [4]>([1, 12, 77, 77])];
tensor<fp16, [1, 12, 77, 77]> var_482_cast = reshape(shape = var_481, x = attn_weights_25_cast)[name = tensor<string, []>("op_482_cast")];
tensor<fp16, [1, 12, 77, 77]> attn_weights_27_cast = add(x = var_482_cast, y = causal_attention_mask_to_fp16_palettized)[name = tensor<string, []>("attn_weights_27_cast")];
tensor<int32, [3]> var_487 = const()[name = tensor<string, []>("op_487"), val = tensor<int32, [3]>([12, 77, 77])];
tensor<fp16, [12, 77, 77]> input_69_cast = reshape(shape = var_487, x = attn_weights_27_cast)[name = tensor<string, []>("input_69_cast")];
tensor<fp16, [12, 77, 77]> input_71_cast = softmax(axis = var_5, x = input_69_cast)[name = tensor<string, []>("input_71_cast")];
tensor<bool, []> attn_output_25_transpose_x_0 = const()[name = tensor<string, []>("attn_output_25_transpose_x_0"), val = tensor<bool, []>(false)];
tensor<bool, []> attn_output_25_transpose_y_0 = const()[name = tensor<string, []>("attn_output_25_transpose_y_0"), val = tensor<bool, []>(false)];
tensor<fp16, [12, 77, 64]> attn_output_25_cast = matmul(transpose_x = attn_output_25_transpose_x_0, transpose_y = attn_output_25_transpose_y_0, x = input_71_cast, y = value_states_19_cast)[name = tensor<string, []>("attn_output_25_cast")];
tensor<int32, [4]> var_492 = const()[name = tensor<string, []>("op_492"), val = tensor<int32, [4]>([1, 12, 77, 64])];
tensor<fp16, [1, 12, 77, 64]> attn_output_27_cast = reshape(shape = var_492, x = attn_output_25_cast)[name = tensor<string, []>("attn_output_27_cast")];
tensor<int32, [4]> attn_output_29_perm_0 = const()[name = tensor<string, []>("attn_output_29_perm_0"), val = tensor<int32, [4]>([0, 2, 1, 3])];
tensor<int32, [3]> var_495 = const()[name = tensor<string, []>("op_495"), val = tensor<int32, [3]>([1, 77, 768])];
tensor<fp16, [1, 77, 12, 64]> transpose_35 = transpose(perm = attn_output_29_perm_0, x = attn_output_27_cast)[name = tensor<string, []>("transpose_35")];
tensor<fp16, [1, 77, 768]> input_73_cast = reshape(shape = var_495, x = transpose_35)[name = tensor<string, []>("input_73_cast")];
tensor<fp16, [768, 768]> text_encoder_text_model_encoder_layers_4_self_attn_out_proj_weight_to_fp16_palettized = constexpr_lut_to_dense()[indices = tensor<uint8, [442368]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(98583680))), lut = tensor<fp16, [64]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(99026112))), name = tensor<string, []>("text_encoder_text_model_encoder_layers_4_self_attn_out_proj_weight_to_fp16_palettized"), shape = tensor<uint32, [2]>([768, 768])];
tensor<fp16, [768]> text_encoder_text_model_encoder_layers_4_self_attn_out_proj_bias_to_fp16 = const()[name = tensor<string, []>("text_encoder_text_model_encoder_layers_4_self_attn_out_proj_bias_to_fp16"), val = tensor<fp16, [768]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(99026304)))];
tensor<fp16, [1, 77, 768]> hidden_states_27_cast = linear(bias = text_encoder_text_model_encoder_layers_4_self_attn_out_proj_bias_to_fp16, weight = text_encoder_text_model_encoder_layers_4_self_attn_out_proj_weight_to_fp16_palettized, x = input_73_cast)[name = tensor<string, []>("hidden_states_27_cast")];
tensor<fp16, [1, 77, 768]> input_75_cast = add(x = input_67_cast, y = hidden_states_27_cast)[name = tensor<string, []>("input_75_cast")];
tensor<int32, [1]> input_77_axes_0 = const()[name = tensor<string, []>("input_77_axes_0"), val = tensor<int32, [1]>([-1])];
tensor<fp16, [768]> text_encoder_text_model_encoder_layers_4_layer_norm2_weight_to_fp16 = const()[name = tensor<string, []>("text_encoder_text_model_encoder_layers_4_layer_norm2_weight_to_fp16"), val = tensor<fp16, [768]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(99027904)))];
tensor<fp16, [768]> text_encoder_text_model_encoder_layers_4_layer_norm2_bias_to_fp16 = const()[name = tensor<string, []>("text_encoder_text_model_encoder_layers_4_layer_norm2_bias_to_fp16"), val = tensor<fp16, [768]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(99029504)))];
tensor<fp16, [1, 77, 768]> input_77_cast = layer_norm(axes = input_77_axes_0, beta = text_encoder_text_model_encoder_layers_4_layer_norm2_bias_to_fp16, epsilon = var_12_to_fp16, gamma = text_encoder_text_model_encoder_layers_4_layer_norm2_weight_to_fp16, x = input_75_cast)[name = tensor<string, []>("input_77_cast")];
tensor<fp16, [3072, 768]> text_encoder_text_model_encoder_layers_4_mlp_fc1_weight_to_fp16_palettized = constexpr_lut_to_dense()[indices = tensor<uint8, [1769472]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(99031104))), lut = tensor<fp16, [64]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(100800640))), name = tensor<string, []>("text_encoder_text_model_encoder_layers_4_mlp_fc1_weight_to_fp16_palettized"), shape = tensor<uint32, [2]>([3072, 768])];
tensor<fp16, [3072]> text_encoder_text_model_encoder_layers_4_mlp_fc1_bias_to_fp16_palettized = constexpr_lut_to_dense()[indices = tensor<uint8, [2304]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(100800832))), lut = tensor<fp16, [64]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(100803200))), name = tensor<string, []>("text_encoder_text_model_encoder_layers_4_mlp_fc1_bias_to_fp16_palettized"), shape = tensor<uint32, [1]>([3072])];
tensor<fp16, [1, 77, 3072]> input_79_cast = linear(bias = text_encoder_text_model_encoder_layers_4_mlp_fc1_bias_to_fp16_palettized, weight = text_encoder_text_model_encoder_layers_4_mlp_fc1_weight_to_fp16_palettized, x = input_77_cast)[name = tensor<string, []>("input_79_cast")];
tensor<fp16, []> var_510_to_fp16 = const()[name = tensor<string, []>("op_510_to_fp16"), val = tensor<fp16, []>(0x1.b3cp+0)];
tensor<fp16, [1, 77, 3072]> var_511_cast = mul(x = input_79_cast, y = var_510_to_fp16)[name = tensor<string, []>("op_511_cast")];
tensor<fp16, [1, 77, 3072]> var_512_cast = sigmoid(x = var_511_cast)[name = tensor<string, []>("op_512_cast")];
tensor<fp16, [1, 77, 3072]> input_81_cast = mul(x = input_79_cast, y = var_512_cast)[name = tensor<string, []>("input_81_cast")];
tensor<fp16, [768, 3072]> text_encoder_text_model_encoder_layers_4_mlp_fc2_weight_to_fp16_palettized = constexpr_lut_to_dense()[indices = tensor<uint8, [1769472]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(100803392))), lut = tensor<fp16, [64]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(102572928))), name = tensor<string, []>("text_encoder_text_model_encoder_layers_4_mlp_fc2_weight_to_fp16_palettized"), shape = tensor<uint32, [2]>([768, 3072])];
tensor<fp16, [768]> text_encoder_text_model_encoder_layers_4_mlp_fc2_bias_to_fp16 = const()[name = tensor<string, []>("text_encoder_text_model_encoder_layers_4_mlp_fc2_bias_to_fp16"), val = tensor<fp16, [768]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(102573120)))];
tensor<fp16, [1, 77, 768]> hidden_states_29_cast = linear(bias = text_encoder_text_model_encoder_layers_4_mlp_fc2_bias_to_fp16, weight = text_encoder_text_model_encoder_layers_4_mlp_fc2_weight_to_fp16_palettized, x = input_81_cast)[name = tensor<string, []>("hidden_states_29_cast")];
tensor<fp16, [1, 77, 768]> input_83_cast = add(x = input_75_cast, y = hidden_states_29_cast)[name = tensor<string, []>("input_83_cast")];
tensor<int32, [1]> hidden_states_31_axes_0 = const()[name = tensor<string, []>("hidden_states_31_axes_0"), val = tensor<int32, [1]>([-1])];
tensor<fp16, [768]> text_encoder_text_model_encoder_layers_5_layer_norm1_weight_to_fp16 = const()[name = tensor<string, []>("text_encoder_text_model_encoder_layers_5_layer_norm1_weight_to_fp16"), val = tensor<fp16, [768]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(102574720)))];
tensor<fp16, [768]> text_encoder_text_model_encoder_layers_5_layer_norm1_bias_to_fp16 = const()[name = tensor<string, []>("text_encoder_text_model_encoder_layers_5_layer_norm1_bias_to_fp16"), val = tensor<fp16, [768]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(102576320)))];
tensor<fp16, [1, 77, 768]> hidden_states_31_cast = layer_norm(axes = hidden_states_31_axes_0, beta = text_encoder_text_model_encoder_layers_5_layer_norm1_bias_to_fp16, epsilon = var_12_to_fp16, gamma = text_encoder_text_model_encoder_layers_5_layer_norm1_weight_to_fp16, x = input_83_cast)[name = tensor<string, []>("hidden_states_31_cast")];
tensor<fp16, [768, 768]> text_encoder_text_model_encoder_layers_5_self_attn_q_proj_weight_to_fp16_palettized = constexpr_lut_to_dense()[indices = tensor<uint8, [442368]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(102577920))), lut = tensor<fp16, [64]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(103020352))), name = tensor<string, []>("text_encoder_text_model_encoder_layers_5_self_attn_q_proj_weight_to_fp16_palettized"), shape = tensor<uint32, [2]>([768, 768])];
tensor<fp16, [768]> text_encoder_text_model_encoder_layers_5_self_attn_q_proj_bias_to_fp16 = const()[name = tensor<string, []>("text_encoder_text_model_encoder_layers_5_self_attn_q_proj_bias_to_fp16"), val = tensor<fp16, [768]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(103020544)))];
tensor<fp16, [1, 77, 768]> var_536_cast = linear(bias = text_encoder_text_model_encoder_layers_5_self_attn_q_proj_bias_to_fp16, weight = text_encoder_text_model_encoder_layers_5_self_attn_q_proj_weight_to_fp16_palettized, x = hidden_states_31_cast)[name = tensor<string, []>("op_536_cast")];
tensor<fp16, []> var_537_to_fp16 = const()[name = tensor<string, []>("op_537_to_fp16"), val = tensor<fp16, []>(0x1p-3)];
tensor<fp16, [1, 77, 768]> tensor_35_cast = mul(x = var_536_cast, y = var_537_to_fp16)[name = tensor<string, []>("tensor_35_cast")];
tensor<fp16, [768, 768]> text_encoder_text_model_encoder_layers_5_self_attn_k_proj_weight_to_fp16_palettized = constexpr_lut_to_dense()[indices = tensor<uint8, [442368]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(103022144))), lut = tensor<fp16, [64]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(103464576))), name = tensor<string, []>("text_encoder_text_model_encoder_layers_5_self_attn_k_proj_weight_to_fp16_palettized"), shape = tensor<uint32, [2]>([768, 768])];
tensor<fp16, [768]> text_encoder_text_model_encoder_layers_5_self_attn_k_proj_bias_to_fp16 = const()[name = tensor<string, []>("text_encoder_text_model_encoder_layers_5_self_attn_k_proj_bias_to_fp16"), val = tensor<fp16, [768]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(103464768)))];
tensor<fp16, [1, 77, 768]> tensor_31_cast = linear(bias = text_encoder_text_model_encoder_layers_5_self_attn_k_proj_bias_to_fp16, weight = text_encoder_text_model_encoder_layers_5_self_attn_k_proj_weight_to_fp16_palettized, x = hidden_states_31_cast)[name = tensor<string, []>("tensor_31_cast")];
tensor<int32, [4]> var_542 = const()[name = tensor<string, []>("op_542"), val = tensor<int32, [4]>([1, -1, 12, 64])];
tensor<fp16, [1, 77, 12, 64]> var_543_cast = reshape(shape = var_542, x = tensor_31_cast)[name = tensor<string, []>("op_543_cast")];
tensor<int32, [4]> var_544_perm_0 = const()[name = tensor<string, []>("op_544_perm_0"), val = tensor<int32, [4]>([0, 2, 1, 3])];
tensor<fp16, [768, 768]> text_encoder_text_model_encoder_layers_5_self_attn_v_proj_weight_to_fp16_palettized = constexpr_lut_to_dense()[indices = tensor<uint8, [442368]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(103466368))), lut = tensor<fp16, [64]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(103908800))), name = tensor<string, []>("text_encoder_text_model_encoder_layers_5_self_attn_v_proj_weight_to_fp16_palettized"), shape = tensor<uint32, [2]>([768, 768])];
tensor<fp16, [768]> text_encoder_text_model_encoder_layers_5_self_attn_v_proj_bias_to_fp16 = const()[name = tensor<string, []>("text_encoder_text_model_encoder_layers_5_self_attn_v_proj_bias_to_fp16"), val = tensor<fp16, [768]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(103908992)))];
tensor<fp16, [1, 77, 768]> tensor_33_cast = linear(bias = text_encoder_text_model_encoder_layers_5_self_attn_v_proj_bias_to_fp16, weight = text_encoder_text_model_encoder_layers_5_self_attn_v_proj_weight_to_fp16_palettized, x = hidden_states_31_cast)[name = tensor<string, []>("tensor_33_cast")];
tensor<int32, [4]> var_549 = const()[name = tensor<string, []>("op_549"), val = tensor<int32, [4]>([1, -1, 12, 64])];
tensor<fp16, [1, 77, 12, 64]> var_550_cast = reshape(shape = var_549, x = tensor_33_cast)[name = tensor<string, []>("op_550_cast")];
tensor<int32, [4]> var_551_perm_0 = const()[name = tensor<string, []>("op_551_perm_0"), val = tensor<int32, [4]>([0, 2, 1, 3])];
tensor<int32, [4]> var_558 = const()[name = tensor<string, []>("op_558"), val = tensor<int32, [4]>([1, 77, 12, 64])];
tensor<fp16, [1, 77, 12, 64]> var_559_cast = reshape(shape = var_558, x = tensor_35_cast)[name = tensor<string, []>("op_559_cast")];
tensor<int32, [4]> var_560_perm_0 = const()[name = tensor<string, []>("op_560_perm_0"), val = tensor<int32, [4]>([0, 2, 1, 3])];
tensor<int32, [3]> var_562 = const()[name = tensor<string, []>("op_562"), val = tensor<int32, [3]>([12, -1, 64])];
tensor<fp16, [1, 12, 77, 64]> transpose_34 = transpose(perm = var_560_perm_0, x = var_559_cast)[name = tensor<string, []>("transpose_34")];
tensor<fp16, [12, 77, 64]> query_states_11_cast = reshape(shape = var_562, x = transpose_34)[name = tensor<string, []>("query_states_11_cast")];
tensor<int32, [3]> var_564 = const()[name = tensor<string, []>("op_564"), val = tensor<int32, [3]>([12, -1, 64])];
tensor<fp16, [1, 12, 77, 64]> transpose_33 = transpose(perm = var_544_perm_0, x = var_543_cast)[name = tensor<string, []>("transpose_33")];
tensor<fp16, [12, 77, 64]> key_states_23_cast = reshape(shape = var_564, x = transpose_33)[name = tensor<string, []>("key_states_23_cast")];
tensor<int32, [3]> var_566 = const()[name = tensor<string, []>("op_566"), val = tensor<int32, [3]>([12, -1, 64])];
tensor<fp16, [1, 12, 77, 64]> transpose_32 = transpose(perm = var_551_perm_0, x = var_550_cast)[name = tensor<string, []>("transpose_32")];
tensor<fp16, [12, 77, 64]> value_states_23_cast = reshape(shape = var_566, x = transpose_32)[name = tensor<string, []>("value_states_23_cast")];
tensor<int32, [3]> var_569_perm_0 = const()[name = tensor<string, []>("op_569_perm_0"), val = tensor<int32, [3]>([0, 2, 1])];
tensor<bool, []> attn_weights_31_transpose_x_0 = const()[name = tensor<string, []>("attn_weights_31_transpose_x_0"), val = tensor<bool, []>(false)];
tensor<bool, []> attn_weights_31_transpose_y_0 = const()[name = tensor<string, []>("attn_weights_31_transpose_y_0"), val = tensor<bool, []>(false)];
tensor<fp16, [12, 64, 77]> transpose_31 = transpose(perm = var_569_perm_0, x = key_states_23_cast)[name = tensor<string, []>("transpose_31")];
tensor<fp16, [12, 77, 77]> attn_weights_31_cast = matmul(transpose_x = attn_weights_31_transpose_x_0, transpose_y = attn_weights_31_transpose_y_0, x = query_states_11_cast, y = transpose_31)[name = tensor<string, []>("attn_weights_31_cast")];
tensor<int32, [4]> var_571 = const()[name = tensor<string, []>("op_571"), val = tensor<int32, [4]>([1, 12, 77, 77])];
tensor<fp16, [1, 12, 77, 77]> var_572_cast = reshape(shape = var_571, x = attn_weights_31_cast)[name = tensor<string, []>("op_572_cast")];
tensor<fp16, [1, 12, 77, 77]> attn_weights_33_cast = add(x = var_572_cast, y = causal_attention_mask_to_fp16_palettized)[name = tensor<string, []>("attn_weights_33_cast")];
tensor<int32, [3]> var_577 = const()[name = tensor<string, []>("op_577"), val = tensor<int32, [3]>([12, 77, 77])];
tensor<fp16, [12, 77, 77]> input_85_cast = reshape(shape = var_577, x = attn_weights_33_cast)[name = tensor<string, []>("input_85_cast")];
tensor<fp16, [12, 77, 77]> input_87_cast = softmax(axis = var_5, x = input_85_cast)[name = tensor<string, []>("input_87_cast")];
tensor<bool, []> attn_output_31_transpose_x_0 = const()[name = tensor<string, []>("attn_output_31_transpose_x_0"), val = tensor<bool, []>(false)];
tensor<bool, []> attn_output_31_transpose_y_0 = const()[name = tensor<string, []>("attn_output_31_transpose_y_0"), val = tensor<bool, []>(false)];
tensor<fp16, [12, 77, 64]> attn_output_31_cast = matmul(transpose_x = attn_output_31_transpose_x_0, transpose_y = attn_output_31_transpose_y_0, x = input_87_cast, y = value_states_23_cast)[name = tensor<string, []>("attn_output_31_cast")];
tensor<int32, [4]> var_582 = const()[name = tensor<string, []>("op_582"), val = tensor<int32, [4]>([1, 12, 77, 64])];
tensor<fp16, [1, 12, 77, 64]> attn_output_33_cast = reshape(shape = var_582, x = attn_output_31_cast)[name = tensor<string, []>("attn_output_33_cast")];
tensor<int32, [4]> attn_output_35_perm_0 = const()[name = tensor<string, []>("attn_output_35_perm_0"), val = tensor<int32, [4]>([0, 2, 1, 3])];
tensor<int32, [3]> var_585 = const()[name = tensor<string, []>("op_585"), val = tensor<int32, [3]>([1, 77, 768])];
tensor<fp16, [1, 77, 12, 64]> transpose_30 = transpose(perm = attn_output_35_perm_0, x = attn_output_33_cast)[name = tensor<string, []>("transpose_30")];
tensor<fp16, [1, 77, 768]> input_89_cast = reshape(shape = var_585, x = transpose_30)[name = tensor<string, []>("input_89_cast")];
tensor<fp16, [768, 768]> text_encoder_text_model_encoder_layers_5_self_attn_out_proj_weight_to_fp16_palettized = constexpr_lut_to_dense()[indices = tensor<uint8, [442368]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(103910592))), lut = tensor<fp16, [64]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(104353024))), name = tensor<string, []>("text_encoder_text_model_encoder_layers_5_self_attn_out_proj_weight_to_fp16_palettized"), shape = tensor<uint32, [2]>([768, 768])];
tensor<fp16, [768]> text_encoder_text_model_encoder_layers_5_self_attn_out_proj_bias_to_fp16 = const()[name = tensor<string, []>("text_encoder_text_model_encoder_layers_5_self_attn_out_proj_bias_to_fp16"), val = tensor<fp16, [768]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(104353216)))];
tensor<fp16, [1, 77, 768]> hidden_states_33_cast = linear(bias = text_encoder_text_model_encoder_layers_5_self_attn_out_proj_bias_to_fp16, weight = text_encoder_text_model_encoder_layers_5_self_attn_out_proj_weight_to_fp16_palettized, x = input_89_cast)[name = tensor<string, []>("hidden_states_33_cast")];
tensor<fp16, [1, 77, 768]> input_91_cast = add(x = input_83_cast, y = hidden_states_33_cast)[name = tensor<string, []>("input_91_cast")];
tensor<int32, [1]> input_93_axes_0 = const()[name = tensor<string, []>("input_93_axes_0"), val = tensor<int32, [1]>([-1])];
tensor<fp16, [768]> text_encoder_text_model_encoder_layers_5_layer_norm2_weight_to_fp16 = const()[name = tensor<string, []>("text_encoder_text_model_encoder_layers_5_layer_norm2_weight_to_fp16"), val = tensor<fp16, [768]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(104354816)))];
tensor<fp16, [768]> text_encoder_text_model_encoder_layers_5_layer_norm2_bias_to_fp16 = const()[name = tensor<string, []>("text_encoder_text_model_encoder_layers_5_layer_norm2_bias_to_fp16"), val = tensor<fp16, [768]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(104356416)))];
tensor<fp16, [1, 77, 768]> input_93_cast = layer_norm(axes = input_93_axes_0, beta = text_encoder_text_model_encoder_layers_5_layer_norm2_bias_to_fp16, epsilon = var_12_to_fp16, gamma = text_encoder_text_model_encoder_layers_5_layer_norm2_weight_to_fp16, x = input_91_cast)[name = tensor<string, []>("input_93_cast")];
tensor<fp16, [3072, 768]> text_encoder_text_model_encoder_layers_5_mlp_fc1_weight_to_fp16_palettized = constexpr_lut_to_dense()[indices = tensor<uint8, [1769472]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(104358016))), lut = tensor<fp16, [64]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(106127552))), name = tensor<string, []>("text_encoder_text_model_encoder_layers_5_mlp_fc1_weight_to_fp16_palettized"), shape = tensor<uint32, [2]>([3072, 768])];
tensor<fp16, [3072]> text_encoder_text_model_encoder_layers_5_mlp_fc1_bias_to_fp16_palettized = constexpr_lut_to_dense()[indices = tensor<uint8, [2304]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(106127744))), lut = tensor<fp16, [64]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(106130112))), name = tensor<string, []>("text_encoder_text_model_encoder_layers_5_mlp_fc1_bias_to_fp16_palettized"), shape = tensor<uint32, [1]>([3072])];
tensor<fp16, [1, 77, 3072]> input_95_cast = linear(bias = text_encoder_text_model_encoder_layers_5_mlp_fc1_bias_to_fp16_palettized, weight = text_encoder_text_model_encoder_layers_5_mlp_fc1_weight_to_fp16_palettized, x = input_93_cast)[name = tensor<string, []>("input_95_cast")];
tensor<fp16, []> var_600_to_fp16 = const()[name = tensor<string, []>("op_600_to_fp16"), val = tensor<fp16, []>(0x1.b3cp+0)];
tensor<fp16, [1, 77, 3072]> var_601_cast = mul(x = input_95_cast, y = var_600_to_fp16)[name = tensor<string, []>("op_601_cast")];
tensor<fp16, [1, 77, 3072]> var_602_cast = sigmoid(x = var_601_cast)[name = tensor<string, []>("op_602_cast")];
tensor<fp16, [1, 77, 3072]> input_97_cast = mul(x = input_95_cast, y = var_602_cast)[name = tensor<string, []>("input_97_cast")];
tensor<fp16, [768, 3072]> text_encoder_text_model_encoder_layers_5_mlp_fc2_weight_to_fp16_palettized = constexpr_lut_to_dense()[indices = tensor<uint8, [1769472]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(106130304))), lut = tensor<fp16, [64]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(107899840))), name = tensor<string, []>("text_encoder_text_model_encoder_layers_5_mlp_fc2_weight_to_fp16_palettized"), shape = tensor<uint32, [2]>([768, 3072])];
tensor<fp16, [768]> text_encoder_text_model_encoder_layers_5_mlp_fc2_bias_to_fp16 = const()[name = tensor<string, []>("text_encoder_text_model_encoder_layers_5_mlp_fc2_bias_to_fp16"), val = tensor<fp16, [768]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(107900032)))];
tensor<fp16, [1, 77, 768]> hidden_states_35_cast = linear(bias = text_encoder_text_model_encoder_layers_5_mlp_fc2_bias_to_fp16, weight = text_encoder_text_model_encoder_layers_5_mlp_fc2_weight_to_fp16_palettized, x = input_97_cast)[name = tensor<string, []>("hidden_states_35_cast")];
tensor<fp16, [1, 77, 768]> input_99_cast = add(x = input_91_cast, y = hidden_states_35_cast)[name = tensor<string, []>("input_99_cast")];
tensor<int32, [1]> hidden_states_37_axes_0 = const()[name = tensor<string, []>("hidden_states_37_axes_0"), val = tensor<int32, [1]>([-1])];
tensor<fp16, [768]> text_encoder_text_model_encoder_layers_6_layer_norm1_weight_to_fp16 = const()[name = tensor<string, []>("text_encoder_text_model_encoder_layers_6_layer_norm1_weight_to_fp16"), val = tensor<fp16, [768]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(107901632)))];
tensor<fp16, [768]> text_encoder_text_model_encoder_layers_6_layer_norm1_bias_to_fp16 = const()[name = tensor<string, []>("text_encoder_text_model_encoder_layers_6_layer_norm1_bias_to_fp16"), val = tensor<fp16, [768]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(107903232)))];
tensor<fp16, [1, 77, 768]> hidden_states_37_cast = layer_norm(axes = hidden_states_37_axes_0, beta = text_encoder_text_model_encoder_layers_6_layer_norm1_bias_to_fp16, epsilon = var_12_to_fp16, gamma = text_encoder_text_model_encoder_layers_6_layer_norm1_weight_to_fp16, x = input_99_cast)[name = tensor<string, []>("hidden_states_37_cast")];
tensor<fp16, [768, 768]> text_encoder_text_model_encoder_layers_6_self_attn_q_proj_weight_to_fp16_palettized = constexpr_lut_to_dense()[indices = tensor<uint8, [442368]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(107904832))), lut = tensor<fp16, [64]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(108347264))), name = tensor<string, []>("text_encoder_text_model_encoder_layers_6_self_attn_q_proj_weight_to_fp16_palettized"), shape = tensor<uint32, [2]>([768, 768])];
tensor<fp16, [768]> text_encoder_text_model_encoder_layers_6_self_attn_q_proj_bias_to_fp16 = const()[name = tensor<string, []>("text_encoder_text_model_encoder_layers_6_self_attn_q_proj_bias_to_fp16"), val = tensor<fp16, [768]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(108347456)))];
tensor<fp16, [1, 77, 768]> var_626_cast = linear(bias = text_encoder_text_model_encoder_layers_6_self_attn_q_proj_bias_to_fp16, weight = text_encoder_text_model_encoder_layers_6_self_attn_q_proj_weight_to_fp16_palettized, x = hidden_states_37_cast)[name = tensor<string, []>("op_626_cast")];
tensor<fp16, []> var_627_to_fp16 = const()[name = tensor<string, []>("op_627_to_fp16"), val = tensor<fp16, []>(0x1p-3)];
tensor<fp16, [1, 77, 768]> tensor_41_cast = mul(x = var_626_cast, y = var_627_to_fp16)[name = tensor<string, []>("tensor_41_cast")];
tensor<fp16, [768, 768]> text_encoder_text_model_encoder_layers_6_self_attn_k_proj_weight_to_fp16_palettized = constexpr_lut_to_dense()[indices = tensor<uint8, [442368]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(108349056))), lut = tensor<fp16, [64]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(108791488))), name = tensor<string, []>("text_encoder_text_model_encoder_layers_6_self_attn_k_proj_weight_to_fp16_palettized"), shape = tensor<uint32, [2]>([768, 768])];
tensor<fp16, [768]> text_encoder_text_model_encoder_layers_6_self_attn_k_proj_bias_to_fp16 = const()[name = tensor<string, []>("text_encoder_text_model_encoder_layers_6_self_attn_k_proj_bias_to_fp16"), val = tensor<fp16, [768]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(108791680)))];
tensor<fp16, [1, 77, 768]> tensor_37_cast = linear(bias = text_encoder_text_model_encoder_layers_6_self_attn_k_proj_bias_to_fp16, weight = text_encoder_text_model_encoder_layers_6_self_attn_k_proj_weight_to_fp16_palettized, x = hidden_states_37_cast)[name = tensor<string, []>("tensor_37_cast")];
tensor<int32, [4]> var_632 = const()[name = tensor<string, []>("op_632"), val = tensor<int32, [4]>([1, -1, 12, 64])];
tensor<fp16, [1, 77, 12, 64]> var_633_cast = reshape(shape = var_632, x = tensor_37_cast)[name = tensor<string, []>("op_633_cast")];
tensor<int32, [4]> var_634_perm_0 = const()[name = tensor<string, []>("op_634_perm_0"), val = tensor<int32, [4]>([0, 2, 1, 3])];
tensor<fp16, [768, 768]> text_encoder_text_model_encoder_layers_6_self_attn_v_proj_weight_to_fp16_palettized = constexpr_lut_to_dense()[indices = tensor<uint8, [442368]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(108793280))), lut = tensor<fp16, [64]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(109235712))), name = tensor<string, []>("text_encoder_text_model_encoder_layers_6_self_attn_v_proj_weight_to_fp16_palettized"), shape = tensor<uint32, [2]>([768, 768])];
tensor<fp16, [768]> text_encoder_text_model_encoder_layers_6_self_attn_v_proj_bias_to_fp16 = const()[name = tensor<string, []>("text_encoder_text_model_encoder_layers_6_self_attn_v_proj_bias_to_fp16"), val = tensor<fp16, [768]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(109235904)))];
tensor<fp16, [1, 77, 768]> tensor_39_cast = linear(bias = text_encoder_text_model_encoder_layers_6_self_attn_v_proj_bias_to_fp16, weight = text_encoder_text_model_encoder_layers_6_self_attn_v_proj_weight_to_fp16_palettized, x = hidden_states_37_cast)[name = tensor<string, []>("tensor_39_cast")];
tensor<int32, [4]> var_639 = const()[name = tensor<string, []>("op_639"), val = tensor<int32, [4]>([1, -1, 12, 64])];
tensor<fp16, [1, 77, 12, 64]> var_640_cast = reshape(shape = var_639, x = tensor_39_cast)[name = tensor<string, []>("op_640_cast")];
tensor<int32, [4]> var_641_perm_0 = const()[name = tensor<string, []>("op_641_perm_0"), val = tensor<int32, [4]>([0, 2, 1, 3])];
tensor<int32, [4]> var_648 = const()[name = tensor<string, []>("op_648"), val = tensor<int32, [4]>([1, 77, 12, 64])];
tensor<fp16, [1, 77, 12, 64]> var_649_cast = reshape(shape = var_648, x = tensor_41_cast)[name = tensor<string, []>("op_649_cast")];
tensor<int32, [4]> var_650_perm_0 = const()[name = tensor<string, []>("op_650_perm_0"), val = tensor<int32, [4]>([0, 2, 1, 3])];
tensor<int32, [3]> var_652 = const()[name = tensor<string, []>("op_652"), val = tensor<int32, [3]>([12, -1, 64])];
tensor<fp16, [1, 12, 77, 64]> transpose_29 = transpose(perm = var_650_perm_0, x = var_649_cast)[name = tensor<string, []>("transpose_29")];
tensor<fp16, [12, 77, 64]> query_states_13_cast = reshape(shape = var_652, x = transpose_29)[name = tensor<string, []>("query_states_13_cast")];
tensor<int32, [3]> var_654 = const()[name = tensor<string, []>("op_654"), val = tensor<int32, [3]>([12, -1, 64])];
tensor<fp16, [1, 12, 77, 64]> transpose_28 = transpose(perm = var_634_perm_0, x = var_633_cast)[name = tensor<string, []>("transpose_28")];
tensor<fp16, [12, 77, 64]> key_states_27_cast = reshape(shape = var_654, x = transpose_28)[name = tensor<string, []>("key_states_27_cast")];
tensor<int32, [3]> var_656 = const()[name = tensor<string, []>("op_656"), val = tensor<int32, [3]>([12, -1, 64])];
tensor<fp16, [1, 12, 77, 64]> transpose_27 = transpose(perm = var_641_perm_0, x = var_640_cast)[name = tensor<string, []>("transpose_27")];
tensor<fp16, [12, 77, 64]> value_states_27_cast = reshape(shape = var_656, x = transpose_27)[name = tensor<string, []>("value_states_27_cast")];
tensor<int32, [3]> var_659_perm_0 = const()[name = tensor<string, []>("op_659_perm_0"), val = tensor<int32, [3]>([0, 2, 1])];
tensor<bool, []> attn_weights_37_transpose_x_0 = const()[name = tensor<string, []>("attn_weights_37_transpose_x_0"), val = tensor<bool, []>(false)];
tensor<bool, []> attn_weights_37_transpose_y_0 = const()[name = tensor<string, []>("attn_weights_37_transpose_y_0"), val = tensor<bool, []>(false)];
tensor<fp16, [12, 64, 77]> transpose_26 = transpose(perm = var_659_perm_0, x = key_states_27_cast)[name = tensor<string, []>("transpose_26")];
tensor<fp16, [12, 77, 77]> attn_weights_37_cast = matmul(transpose_x = attn_weights_37_transpose_x_0, transpose_y = attn_weights_37_transpose_y_0, x = query_states_13_cast, y = transpose_26)[name = tensor<string, []>("attn_weights_37_cast")];
tensor<int32, [4]> var_661 = const()[name = tensor<string, []>("op_661"), val = tensor<int32, [4]>([1, 12, 77, 77])];
tensor<fp16, [1, 12, 77, 77]> var_662_cast = reshape(shape = var_661, x = attn_weights_37_cast)[name = tensor<string, []>("op_662_cast")];
tensor<fp16, [1, 12, 77, 77]> attn_weights_39_cast = add(x = var_662_cast, y = causal_attention_mask_to_fp16_palettized)[name = tensor<string, []>("attn_weights_39_cast")];
tensor<int32, [3]> var_667 = const()[name = tensor<string, []>("op_667"), val = tensor<int32, [3]>([12, 77, 77])];
tensor<fp16, [12, 77, 77]> input_101_cast = reshape(shape = var_667, x = attn_weights_39_cast)[name = tensor<string, []>("input_101_cast")];
tensor<fp16, [12, 77, 77]> input_103_cast = softmax(axis = var_5, x = input_101_cast)[name = tensor<string, []>("input_103_cast")];
tensor<bool, []> attn_output_37_transpose_x_0 = const()[name = tensor<string, []>("attn_output_37_transpose_x_0"), val = tensor<bool, []>(false)];
tensor<bool, []> attn_output_37_transpose_y_0 = const()[name = tensor<string, []>("attn_output_37_transpose_y_0"), val = tensor<bool, []>(false)];
tensor<fp16, [12, 77, 64]> attn_output_37_cast = matmul(transpose_x = attn_output_37_transpose_x_0, transpose_y = attn_output_37_transpose_y_0, x = input_103_cast, y = value_states_27_cast)[name = tensor<string, []>("attn_output_37_cast")];
tensor<int32, [4]> var_672 = const()[name = tensor<string, []>("op_672"), val = tensor<int32, [4]>([1, 12, 77, 64])];
tensor<fp16, [1, 12, 77, 64]> attn_output_39_cast = reshape(shape = var_672, x = attn_output_37_cast)[name = tensor<string, []>("attn_output_39_cast")];
tensor<int32, [4]> attn_output_41_perm_0 = const()[name = tensor<string, []>("attn_output_41_perm_0"), val = tensor<int32, [4]>([0, 2, 1, 3])];
tensor<int32, [3]> var_675 = const()[name = tensor<string, []>("op_675"), val = tensor<int32, [3]>([1, 77, 768])];
tensor<fp16, [1, 77, 12, 64]> transpose_25 = transpose(perm = attn_output_41_perm_0, x = attn_output_39_cast)[name = tensor<string, []>("transpose_25")];
tensor<fp16, [1, 77, 768]> input_105_cast = reshape(shape = var_675, x = transpose_25)[name = tensor<string, []>("input_105_cast")];
tensor<fp16, [768, 768]> text_encoder_text_model_encoder_layers_6_self_attn_out_proj_weight_to_fp16_palettized = constexpr_lut_to_dense()[indices = tensor<uint8, [442368]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(109237504))), lut = tensor<fp16, [64]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(109679936))), name = tensor<string, []>("text_encoder_text_model_encoder_layers_6_self_attn_out_proj_weight_to_fp16_palettized"), shape = tensor<uint32, [2]>([768, 768])];
tensor<fp16, [768]> text_encoder_text_model_encoder_layers_6_self_attn_out_proj_bias_to_fp16 = const()[name = tensor<string, []>("text_encoder_text_model_encoder_layers_6_self_attn_out_proj_bias_to_fp16"), val = tensor<fp16, [768]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(109680128)))];
tensor<fp16, [1, 77, 768]> hidden_states_39_cast = linear(bias = text_encoder_text_model_encoder_layers_6_self_attn_out_proj_bias_to_fp16, weight = text_encoder_text_model_encoder_layers_6_self_attn_out_proj_weight_to_fp16_palettized, x = input_105_cast)[name = tensor<string, []>("hidden_states_39_cast")];
tensor<fp16, [1, 77, 768]> input_107_cast = add(x = input_99_cast, y = hidden_states_39_cast)[name = tensor<string, []>("input_107_cast")];
tensor<int32, [1]> input_109_axes_0 = const()[name = tensor<string, []>("input_109_axes_0"), val = tensor<int32, [1]>([-1])];
tensor<fp16, [768]> text_encoder_text_model_encoder_layers_6_layer_norm2_weight_to_fp16 = const()[name = tensor<string, []>("text_encoder_text_model_encoder_layers_6_layer_norm2_weight_to_fp16"), val = tensor<fp16, [768]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(109681728)))];
tensor<fp16, [768]> text_encoder_text_model_encoder_layers_6_layer_norm2_bias_to_fp16 = const()[name = tensor<string, []>("text_encoder_text_model_encoder_layers_6_layer_norm2_bias_to_fp16"), val = tensor<fp16, [768]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(109683328)))];
tensor<fp16, [1, 77, 768]> input_109_cast = layer_norm(axes = input_109_axes_0, beta = text_encoder_text_model_encoder_layers_6_layer_norm2_bias_to_fp16, epsilon = var_12_to_fp16, gamma = text_encoder_text_model_encoder_layers_6_layer_norm2_weight_to_fp16, x = input_107_cast)[name = tensor<string, []>("input_109_cast")];
tensor<fp16, [3072, 768]> text_encoder_text_model_encoder_layers_6_mlp_fc1_weight_to_fp16_palettized = constexpr_lut_to_dense()[indices = tensor<uint8, [1769472]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(109684928))), lut = tensor<fp16, [64]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(111454464))), name = tensor<string, []>("text_encoder_text_model_encoder_layers_6_mlp_fc1_weight_to_fp16_palettized"), shape = tensor<uint32, [2]>([3072, 768])];
tensor<fp16, [3072]> text_encoder_text_model_encoder_layers_6_mlp_fc1_bias_to_fp16_palettized = constexpr_lut_to_dense()[indices = tensor<uint8, [2304]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(111454656))), lut = tensor<fp16, [64]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(111457024))), name = tensor<string, []>("text_encoder_text_model_encoder_layers_6_mlp_fc1_bias_to_fp16_palettized"), shape = tensor<uint32, [1]>([3072])];
tensor<fp16, [1, 77, 3072]> input_111_cast = linear(bias = text_encoder_text_model_encoder_layers_6_mlp_fc1_bias_to_fp16_palettized, weight = text_encoder_text_model_encoder_layers_6_mlp_fc1_weight_to_fp16_palettized, x = input_109_cast)[name = tensor<string, []>("input_111_cast")];
tensor<fp16, []> var_690_to_fp16 = const()[name = tensor<string, []>("op_690_to_fp16"), val = tensor<fp16, []>(0x1.b3cp+0)];
tensor<fp16, [1, 77, 3072]> var_691_cast = mul(x = input_111_cast, y = var_690_to_fp16)[name = tensor<string, []>("op_691_cast")];
tensor<fp16, [1, 77, 3072]> var_692_cast = sigmoid(x = var_691_cast)[name = tensor<string, []>("op_692_cast")];
tensor<fp16, [1, 77, 3072]> input_113_cast = mul(x = input_111_cast, y = var_692_cast)[name = tensor<string, []>("input_113_cast")];
tensor<fp16, [768, 3072]> text_encoder_text_model_encoder_layers_6_mlp_fc2_weight_to_fp16_palettized = constexpr_lut_to_dense()[indices = tensor<uint8, [1769472]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(111457216))), lut = tensor<fp16, [64]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(113226752))), name = tensor<string, []>("text_encoder_text_model_encoder_layers_6_mlp_fc2_weight_to_fp16_palettized"), shape = tensor<uint32, [2]>([768, 3072])];
tensor<fp16, [768]> text_encoder_text_model_encoder_layers_6_mlp_fc2_bias_to_fp16 = const()[name = tensor<string, []>("text_encoder_text_model_encoder_layers_6_mlp_fc2_bias_to_fp16"), val = tensor<fp16, [768]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(113226944)))];
tensor<fp16, [1, 77, 768]> hidden_states_41_cast = linear(bias = text_encoder_text_model_encoder_layers_6_mlp_fc2_bias_to_fp16, weight = text_encoder_text_model_encoder_layers_6_mlp_fc2_weight_to_fp16_palettized, x = input_113_cast)[name = tensor<string, []>("hidden_states_41_cast")];
tensor<fp16, [1, 77, 768]> input_115_cast = add(x = input_107_cast, y = hidden_states_41_cast)[name = tensor<string, []>("input_115_cast")];
tensor<int32, [1]> hidden_states_43_axes_0 = const()[name = tensor<string, []>("hidden_states_43_axes_0"), val = tensor<int32, [1]>([-1])];
tensor<fp16, [768]> text_encoder_text_model_encoder_layers_7_layer_norm1_weight_to_fp16 = const()[name = tensor<string, []>("text_encoder_text_model_encoder_layers_7_layer_norm1_weight_to_fp16"), val = tensor<fp16, [768]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(113228544)))];
tensor<fp16, [768]> text_encoder_text_model_encoder_layers_7_layer_norm1_bias_to_fp16 = const()[name = tensor<string, []>("text_encoder_text_model_encoder_layers_7_layer_norm1_bias_to_fp16"), val = tensor<fp16, [768]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(113230144)))];
tensor<fp16, [1, 77, 768]> hidden_states_43_cast = layer_norm(axes = hidden_states_43_axes_0, beta = text_encoder_text_model_encoder_layers_7_layer_norm1_bias_to_fp16, epsilon = var_12_to_fp16, gamma = text_encoder_text_model_encoder_layers_7_layer_norm1_weight_to_fp16, x = input_115_cast)[name = tensor<string, []>("hidden_states_43_cast")];
tensor<fp16, [768, 768]> text_encoder_text_model_encoder_layers_7_self_attn_q_proj_weight_to_fp16_palettized = constexpr_lut_to_dense()[indices = tensor<uint8, [442368]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(113231744))), lut = tensor<fp16, [64]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(113674176))), name = tensor<string, []>("text_encoder_text_model_encoder_layers_7_self_attn_q_proj_weight_to_fp16_palettized"), shape = tensor<uint32, [2]>([768, 768])];
tensor<fp16, [768]> text_encoder_text_model_encoder_layers_7_self_attn_q_proj_bias_to_fp16 = const()[name = tensor<string, []>("text_encoder_text_model_encoder_layers_7_self_attn_q_proj_bias_to_fp16"), val = tensor<fp16, [768]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(113674368)))];
tensor<fp16, [1, 77, 768]> var_716_cast = linear(bias = text_encoder_text_model_encoder_layers_7_self_attn_q_proj_bias_to_fp16, weight = text_encoder_text_model_encoder_layers_7_self_attn_q_proj_weight_to_fp16_palettized, x = hidden_states_43_cast)[name = tensor<string, []>("op_716_cast")];
tensor<fp16, []> var_717_to_fp16 = const()[name = tensor<string, []>("op_717_to_fp16"), val = tensor<fp16, []>(0x1p-3)];
tensor<fp16, [1, 77, 768]> tensor_47_cast = mul(x = var_716_cast, y = var_717_to_fp16)[name = tensor<string, []>("tensor_47_cast")];
tensor<fp16, [768, 768]> text_encoder_text_model_encoder_layers_7_self_attn_k_proj_weight_to_fp16_palettized = constexpr_lut_to_dense()[indices = tensor<uint8, [442368]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(113675968))), lut = tensor<fp16, [64]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(114118400))), name = tensor<string, []>("text_encoder_text_model_encoder_layers_7_self_attn_k_proj_weight_to_fp16_palettized"), shape = tensor<uint32, [2]>([768, 768])];
tensor<fp16, [768]> text_encoder_text_model_encoder_layers_7_self_attn_k_proj_bias_to_fp16 = const()[name = tensor<string, []>("text_encoder_text_model_encoder_layers_7_self_attn_k_proj_bias_to_fp16"), val = tensor<fp16, [768]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(114118592)))];
tensor<fp16, [1, 77, 768]> tensor_43_cast = linear(bias = text_encoder_text_model_encoder_layers_7_self_attn_k_proj_bias_to_fp16, weight = text_encoder_text_model_encoder_layers_7_self_attn_k_proj_weight_to_fp16_palettized, x = hidden_states_43_cast)[name = tensor<string, []>("tensor_43_cast")];
tensor<int32, [4]> var_722 = const()[name = tensor<string, []>("op_722"), val = tensor<int32, [4]>([1, -1, 12, 64])];
tensor<fp16, [1, 77, 12, 64]> var_723_cast = reshape(shape = var_722, x = tensor_43_cast)[name = tensor<string, []>("op_723_cast")];
tensor<int32, [4]> var_724_perm_0 = const()[name = tensor<string, []>("op_724_perm_0"), val = tensor<int32, [4]>([0, 2, 1, 3])];
tensor<fp16, [768, 768]> text_encoder_text_model_encoder_layers_7_self_attn_v_proj_weight_to_fp16_palettized = constexpr_lut_to_dense()[indices = tensor<uint8, [442368]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(114120192))), lut = tensor<fp16, [64]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(114562624))), name = tensor<string, []>("text_encoder_text_model_encoder_layers_7_self_attn_v_proj_weight_to_fp16_palettized"), shape = tensor<uint32, [2]>([768, 768])];
tensor<fp16, [768]> text_encoder_text_model_encoder_layers_7_self_attn_v_proj_bias_to_fp16 = const()[name = tensor<string, []>("text_encoder_text_model_encoder_layers_7_self_attn_v_proj_bias_to_fp16"), val = tensor<fp16, [768]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(114562816)))];
tensor<fp16, [1, 77, 768]> tensor_45_cast = linear(bias = text_encoder_text_model_encoder_layers_7_self_attn_v_proj_bias_to_fp16, weight = text_encoder_text_model_encoder_layers_7_self_attn_v_proj_weight_to_fp16_palettized, x = hidden_states_43_cast)[name = tensor<string, []>("tensor_45_cast")];
tensor<int32, [4]> var_729 = const()[name = tensor<string, []>("op_729"), val = tensor<int32, [4]>([1, -1, 12, 64])];
tensor<fp16, [1, 77, 12, 64]> var_730_cast = reshape(shape = var_729, x = tensor_45_cast)[name = tensor<string, []>("op_730_cast")];
tensor<int32, [4]> var_731_perm_0 = const()[name = tensor<string, []>("op_731_perm_0"), val = tensor<int32, [4]>([0, 2, 1, 3])];
tensor<int32, [4]> var_738 = const()[name = tensor<string, []>("op_738"), val = tensor<int32, [4]>([1, 77, 12, 64])];
tensor<fp16, [1, 77, 12, 64]> var_739_cast = reshape(shape = var_738, x = tensor_47_cast)[name = tensor<string, []>("op_739_cast")];
tensor<int32, [4]> var_740_perm_0 = const()[name = tensor<string, []>("op_740_perm_0"), val = tensor<int32, [4]>([0, 2, 1, 3])];
tensor<int32, [3]> var_742 = const()[name = tensor<string, []>("op_742"), val = tensor<int32, [3]>([12, -1, 64])];
tensor<fp16, [1, 12, 77, 64]> transpose_24 = transpose(perm = var_740_perm_0, x = var_739_cast)[name = tensor<string, []>("transpose_24")];
tensor<fp16, [12, 77, 64]> query_states_15_cast = reshape(shape = var_742, x = transpose_24)[name = tensor<string, []>("query_states_15_cast")];
tensor<int32, [3]> var_744 = const()[name = tensor<string, []>("op_744"), val = tensor<int32, [3]>([12, -1, 64])];
tensor<fp16, [1, 12, 77, 64]> transpose_23 = transpose(perm = var_724_perm_0, x = var_723_cast)[name = tensor<string, []>("transpose_23")];
tensor<fp16, [12, 77, 64]> key_states_31_cast = reshape(shape = var_744, x = transpose_23)[name = tensor<string, []>("key_states_31_cast")];
tensor<int32, [3]> var_746 = const()[name = tensor<string, []>("op_746"), val = tensor<int32, [3]>([12, -1, 64])];
tensor<fp16, [1, 12, 77, 64]> transpose_22 = transpose(perm = var_731_perm_0, x = var_730_cast)[name = tensor<string, []>("transpose_22")];
tensor<fp16, [12, 77, 64]> value_states_31_cast = reshape(shape = var_746, x = transpose_22)[name = tensor<string, []>("value_states_31_cast")];
tensor<int32, [3]> var_749_perm_0 = const()[name = tensor<string, []>("op_749_perm_0"), val = tensor<int32, [3]>([0, 2, 1])];
tensor<bool, []> attn_weights_43_transpose_x_0 = const()[name = tensor<string, []>("attn_weights_43_transpose_x_0"), val = tensor<bool, []>(false)];
tensor<bool, []> attn_weights_43_transpose_y_0 = const()[name = tensor<string, []>("attn_weights_43_transpose_y_0"), val = tensor<bool, []>(false)];
tensor<fp16, [12, 64, 77]> transpose_21 = transpose(perm = var_749_perm_0, x = key_states_31_cast)[name = tensor<string, []>("transpose_21")];
tensor<fp16, [12, 77, 77]> attn_weights_43_cast = matmul(transpose_x = attn_weights_43_transpose_x_0, transpose_y = attn_weights_43_transpose_y_0, x = query_states_15_cast, y = transpose_21)[name = tensor<string, []>("attn_weights_43_cast")];
tensor<int32, [4]> var_751 = const()[name = tensor<string, []>("op_751"), val = tensor<int32, [4]>([1, 12, 77, 77])];
tensor<fp16, [1, 12, 77, 77]> var_752_cast = reshape(shape = var_751, x = attn_weights_43_cast)[name = tensor<string, []>("op_752_cast")];
tensor<fp16, [1, 12, 77, 77]> attn_weights_45_cast = add(x = var_752_cast, y = causal_attention_mask_to_fp16_palettized)[name = tensor<string, []>("attn_weights_45_cast")];
tensor<int32, [3]> var_757 = const()[name = tensor<string, []>("op_757"), val = tensor<int32, [3]>([12, 77, 77])];
tensor<fp16, [12, 77, 77]> input_117_cast = reshape(shape = var_757, x = attn_weights_45_cast)[name = tensor<string, []>("input_117_cast")];
tensor<fp16, [12, 77, 77]> input_119_cast = softmax(axis = var_5, x = input_117_cast)[name = tensor<string, []>("input_119_cast")];
tensor<bool, []> attn_output_43_transpose_x_0 = const()[name = tensor<string, []>("attn_output_43_transpose_x_0"), val = tensor<bool, []>(false)];
tensor<bool, []> attn_output_43_transpose_y_0 = const()[name = tensor<string, []>("attn_output_43_transpose_y_0"), val = tensor<bool, []>(false)];
tensor<fp16, [12, 77, 64]> attn_output_43_cast = matmul(transpose_x = attn_output_43_transpose_x_0, transpose_y = attn_output_43_transpose_y_0, x = input_119_cast, y = value_states_31_cast)[name = tensor<string, []>("attn_output_43_cast")];
tensor<int32, [4]> var_762 = const()[name = tensor<string, []>("op_762"), val = tensor<int32, [4]>([1, 12, 77, 64])];
tensor<fp16, [1, 12, 77, 64]> attn_output_45_cast = reshape(shape = var_762, x = attn_output_43_cast)[name = tensor<string, []>("attn_output_45_cast")];
tensor<int32, [4]> attn_output_47_perm_0 = const()[name = tensor<string, []>("attn_output_47_perm_0"), val = tensor<int32, [4]>([0, 2, 1, 3])];
tensor<int32, [3]> var_765 = const()[name = tensor<string, []>("op_765"), val = tensor<int32, [3]>([1, 77, 768])];
tensor<fp16, [1, 77, 12, 64]> transpose_20 = transpose(perm = attn_output_47_perm_0, x = attn_output_45_cast)[name = tensor<string, []>("transpose_20")];
tensor<fp16, [1, 77, 768]> input_121_cast = reshape(shape = var_765, x = transpose_20)[name = tensor<string, []>("input_121_cast")];
tensor<fp16, [768, 768]> text_encoder_text_model_encoder_layers_7_self_attn_out_proj_weight_to_fp16_palettized = constexpr_lut_to_dense()[indices = tensor<uint8, [442368]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(114564416))), lut = tensor<fp16, [64]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(115006848))), name = tensor<string, []>("text_encoder_text_model_encoder_layers_7_self_attn_out_proj_weight_to_fp16_palettized"), shape = tensor<uint32, [2]>([768, 768])];
tensor<fp16, [768]> text_encoder_text_model_encoder_layers_7_self_attn_out_proj_bias_to_fp16 = const()[name = tensor<string, []>("text_encoder_text_model_encoder_layers_7_self_attn_out_proj_bias_to_fp16"), val = tensor<fp16, [768]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(115007040)))];
tensor<fp16, [1, 77, 768]> hidden_states_45_cast = linear(bias = text_encoder_text_model_encoder_layers_7_self_attn_out_proj_bias_to_fp16, weight = text_encoder_text_model_encoder_layers_7_self_attn_out_proj_weight_to_fp16_palettized, x = input_121_cast)[name = tensor<string, []>("hidden_states_45_cast")];
tensor<fp16, [1, 77, 768]> input_123_cast = add(x = input_115_cast, y = hidden_states_45_cast)[name = tensor<string, []>("input_123_cast")];
tensor<int32, [1]> input_125_axes_0 = const()[name = tensor<string, []>("input_125_axes_0"), val = tensor<int32, [1]>([-1])];
tensor<fp16, [768]> text_encoder_text_model_encoder_layers_7_layer_norm2_weight_to_fp16 = const()[name = tensor<string, []>("text_encoder_text_model_encoder_layers_7_layer_norm2_weight_to_fp16"), val = tensor<fp16, [768]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(115008640)))];
tensor<fp16, [768]> text_encoder_text_model_encoder_layers_7_layer_norm2_bias_to_fp16 = const()[name = tensor<string, []>("text_encoder_text_model_encoder_layers_7_layer_norm2_bias_to_fp16"), val = tensor<fp16, [768]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(115010240)))];
tensor<fp16, [1, 77, 768]> input_125_cast = layer_norm(axes = input_125_axes_0, beta = text_encoder_text_model_encoder_layers_7_layer_norm2_bias_to_fp16, epsilon = var_12_to_fp16, gamma = text_encoder_text_model_encoder_layers_7_layer_norm2_weight_to_fp16, x = input_123_cast)[name = tensor<string, []>("input_125_cast")];
tensor<fp16, [3072, 768]> text_encoder_text_model_encoder_layers_7_mlp_fc1_weight_to_fp16_palettized = constexpr_lut_to_dense()[indices = tensor<uint8, [1769472]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(115011840))), lut = tensor<fp16, [64]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(116781376))), name = tensor<string, []>("text_encoder_text_model_encoder_layers_7_mlp_fc1_weight_to_fp16_palettized"), shape = tensor<uint32, [2]>([3072, 768])];
tensor<fp16, [3072]> text_encoder_text_model_encoder_layers_7_mlp_fc1_bias_to_fp16_palettized = constexpr_lut_to_dense()[indices = tensor<uint8, [2304]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(116781568))), lut = tensor<fp16, [64]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(116783936))), name = tensor<string, []>("text_encoder_text_model_encoder_layers_7_mlp_fc1_bias_to_fp16_palettized"), shape = tensor<uint32, [1]>([3072])];
tensor<fp16, [1, 77, 3072]> input_127_cast = linear(bias = text_encoder_text_model_encoder_layers_7_mlp_fc1_bias_to_fp16_palettized, weight = text_encoder_text_model_encoder_layers_7_mlp_fc1_weight_to_fp16_palettized, x = input_125_cast)[name = tensor<string, []>("input_127_cast")];
tensor<fp16, []> var_780_to_fp16 = const()[name = tensor<string, []>("op_780_to_fp16"), val = tensor<fp16, []>(0x1.b3cp+0)];
tensor<fp16, [1, 77, 3072]> var_781_cast = mul(x = input_127_cast, y = var_780_to_fp16)[name = tensor<string, []>("op_781_cast")];
tensor<fp16, [1, 77, 3072]> var_782_cast = sigmoid(x = var_781_cast)[name = tensor<string, []>("op_782_cast")];
tensor<fp16, [1, 77, 3072]> input_129_cast = mul(x = input_127_cast, y = var_782_cast)[name = tensor<string, []>("input_129_cast")];
tensor<fp16, [768, 3072]> text_encoder_text_model_encoder_layers_7_mlp_fc2_weight_to_fp16_palettized = constexpr_lut_to_dense()[indices = tensor<uint8, [1769472]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(116784128))), lut = tensor<fp16, [64]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(118553664))), name = tensor<string, []>("text_encoder_text_model_encoder_layers_7_mlp_fc2_weight_to_fp16_palettized"), shape = tensor<uint32, [2]>([768, 3072])];
tensor<fp16, [768]> text_encoder_text_model_encoder_layers_7_mlp_fc2_bias_to_fp16 = const()[name = tensor<string, []>("text_encoder_text_model_encoder_layers_7_mlp_fc2_bias_to_fp16"), val = tensor<fp16, [768]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(118553856)))];
tensor<fp16, [1, 77, 768]> hidden_states_47_cast = linear(bias = text_encoder_text_model_encoder_layers_7_mlp_fc2_bias_to_fp16, weight = text_encoder_text_model_encoder_layers_7_mlp_fc2_weight_to_fp16_palettized, x = input_129_cast)[name = tensor<string, []>("hidden_states_47_cast")];
tensor<fp16, [1, 77, 768]> input_131_cast = add(x = input_123_cast, y = hidden_states_47_cast)[name = tensor<string, []>("input_131_cast")];
tensor<int32, [1]> hidden_states_49_axes_0 = const()[name = tensor<string, []>("hidden_states_49_axes_0"), val = tensor<int32, [1]>([-1])];
tensor<fp16, [768]> text_encoder_text_model_encoder_layers_8_layer_norm1_weight_to_fp16 = const()[name = tensor<string, []>("text_encoder_text_model_encoder_layers_8_layer_norm1_weight_to_fp16"), val = tensor<fp16, [768]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(118555456)))];
tensor<fp16, [768]> text_encoder_text_model_encoder_layers_8_layer_norm1_bias_to_fp16 = const()[name = tensor<string, []>("text_encoder_text_model_encoder_layers_8_layer_norm1_bias_to_fp16"), val = tensor<fp16, [768]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(118557056)))];
tensor<fp16, [1, 77, 768]> hidden_states_49_cast = layer_norm(axes = hidden_states_49_axes_0, beta = text_encoder_text_model_encoder_layers_8_layer_norm1_bias_to_fp16, epsilon = var_12_to_fp16, gamma = text_encoder_text_model_encoder_layers_8_layer_norm1_weight_to_fp16, x = input_131_cast)[name = tensor<string, []>("hidden_states_49_cast")];
tensor<fp16, [768, 768]> text_encoder_text_model_encoder_layers_8_self_attn_q_proj_weight_to_fp16_palettized = constexpr_lut_to_dense()[indices = tensor<uint8, [442368]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(118558656))), lut = tensor<fp16, [64]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(119001088))), name = tensor<string, []>("text_encoder_text_model_encoder_layers_8_self_attn_q_proj_weight_to_fp16_palettized"), shape = tensor<uint32, [2]>([768, 768])];
tensor<fp16, [768]> text_encoder_text_model_encoder_layers_8_self_attn_q_proj_bias_to_fp16 = const()[name = tensor<string, []>("text_encoder_text_model_encoder_layers_8_self_attn_q_proj_bias_to_fp16"), val = tensor<fp16, [768]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(119001280)))];
tensor<fp16, [1, 77, 768]> var_806_cast = linear(bias = text_encoder_text_model_encoder_layers_8_self_attn_q_proj_bias_to_fp16, weight = text_encoder_text_model_encoder_layers_8_self_attn_q_proj_weight_to_fp16_palettized, x = hidden_states_49_cast)[name = tensor<string, []>("op_806_cast")];
tensor<fp16, []> var_807_to_fp16 = const()[name = tensor<string, []>("op_807_to_fp16"), val = tensor<fp16, []>(0x1p-3)];
tensor<fp16, [1, 77, 768]> tensor_53_cast = mul(x = var_806_cast, y = var_807_to_fp16)[name = tensor<string, []>("tensor_53_cast")];
tensor<fp16, [768, 768]> text_encoder_text_model_encoder_layers_8_self_attn_k_proj_weight_to_fp16_palettized = constexpr_lut_to_dense()[indices = tensor<uint8, [442368]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(119002880))), lut = tensor<fp16, [64]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(119445312))), name = tensor<string, []>("text_encoder_text_model_encoder_layers_8_self_attn_k_proj_weight_to_fp16_palettized"), shape = tensor<uint32, [2]>([768, 768])];
tensor<fp16, [768]> text_encoder_text_model_encoder_layers_8_self_attn_k_proj_bias_to_fp16 = const()[name = tensor<string, []>("text_encoder_text_model_encoder_layers_8_self_attn_k_proj_bias_to_fp16"), val = tensor<fp16, [768]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(119445504)))];
tensor<fp16, [1, 77, 768]> tensor_49_cast = linear(bias = text_encoder_text_model_encoder_layers_8_self_attn_k_proj_bias_to_fp16, weight = text_encoder_text_model_encoder_layers_8_self_attn_k_proj_weight_to_fp16_palettized, x = hidden_states_49_cast)[name = tensor<string, []>("tensor_49_cast")];
tensor<int32, [4]> var_812 = const()[name = tensor<string, []>("op_812"), val = tensor<int32, [4]>([1, -1, 12, 64])];
tensor<fp16, [1, 77, 12, 64]> var_813_cast = reshape(shape = var_812, x = tensor_49_cast)[name = tensor<string, []>("op_813_cast")];
tensor<int32, [4]> var_814_perm_0 = const()[name = tensor<string, []>("op_814_perm_0"), val = tensor<int32, [4]>([0, 2, 1, 3])];
tensor<fp16, [768, 768]> text_encoder_text_model_encoder_layers_8_self_attn_v_proj_weight_to_fp16_palettized = constexpr_lut_to_dense()[indices = tensor<uint8, [442368]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(119447104))), lut = tensor<fp16, [64]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(119889536))), name = tensor<string, []>("text_encoder_text_model_encoder_layers_8_self_attn_v_proj_weight_to_fp16_palettized"), shape = tensor<uint32, [2]>([768, 768])];
tensor<fp16, [768]> text_encoder_text_model_encoder_layers_8_self_attn_v_proj_bias_to_fp16 = const()[name = tensor<string, []>("text_encoder_text_model_encoder_layers_8_self_attn_v_proj_bias_to_fp16"), val = tensor<fp16, [768]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(119889728)))];
tensor<fp16, [1, 77, 768]> tensor_51_cast = linear(bias = text_encoder_text_model_encoder_layers_8_self_attn_v_proj_bias_to_fp16, weight = text_encoder_text_model_encoder_layers_8_self_attn_v_proj_weight_to_fp16_palettized, x = hidden_states_49_cast)[name = tensor<string, []>("tensor_51_cast")];
tensor<int32, [4]> var_819 = const()[name = tensor<string, []>("op_819"), val = tensor<int32, [4]>([1, -1, 12, 64])];
tensor<fp16, [1, 77, 12, 64]> var_820_cast = reshape(shape = var_819, x = tensor_51_cast)[name = tensor<string, []>("op_820_cast")];
tensor<int32, [4]> var_821_perm_0 = const()[name = tensor<string, []>("op_821_perm_0"), val = tensor<int32, [4]>([0, 2, 1, 3])];
tensor<int32, [4]> var_828 = const()[name = tensor<string, []>("op_828"), val = tensor<int32, [4]>([1, 77, 12, 64])];
tensor<fp16, [1, 77, 12, 64]> var_829_cast = reshape(shape = var_828, x = tensor_53_cast)[name = tensor<string, []>("op_829_cast")];
tensor<int32, [4]> var_830_perm_0 = const()[name = tensor<string, []>("op_830_perm_0"), val = tensor<int32, [4]>([0, 2, 1, 3])];
tensor<int32, [3]> var_832 = const()[name = tensor<string, []>("op_832"), val = tensor<int32, [3]>([12, -1, 64])];
tensor<fp16, [1, 12, 77, 64]> transpose_19 = transpose(perm = var_830_perm_0, x = var_829_cast)[name = tensor<string, []>("transpose_19")];
tensor<fp16, [12, 77, 64]> query_states_17_cast = reshape(shape = var_832, x = transpose_19)[name = tensor<string, []>("query_states_17_cast")];
tensor<int32, [3]> var_834 = const()[name = tensor<string, []>("op_834"), val = tensor<int32, [3]>([12, -1, 64])];
tensor<fp16, [1, 12, 77, 64]> transpose_18 = transpose(perm = var_814_perm_0, x = var_813_cast)[name = tensor<string, []>("transpose_18")];
tensor<fp16, [12, 77, 64]> key_states_35_cast = reshape(shape = var_834, x = transpose_18)[name = tensor<string, []>("key_states_35_cast")];
tensor<int32, [3]> var_836 = const()[name = tensor<string, []>("op_836"), val = tensor<int32, [3]>([12, -1, 64])];
tensor<fp16, [1, 12, 77, 64]> transpose_17 = transpose(perm = var_821_perm_0, x = var_820_cast)[name = tensor<string, []>("transpose_17")];
tensor<fp16, [12, 77, 64]> value_states_35_cast = reshape(shape = var_836, x = transpose_17)[name = tensor<string, []>("value_states_35_cast")];
tensor<int32, [3]> var_839_perm_0 = const()[name = tensor<string, []>("op_839_perm_0"), val = tensor<int32, [3]>([0, 2, 1])];
tensor<bool, []> attn_weights_49_transpose_x_0 = const()[name = tensor<string, []>("attn_weights_49_transpose_x_0"), val = tensor<bool, []>(false)];
tensor<bool, []> attn_weights_49_transpose_y_0 = const()[name = tensor<string, []>("attn_weights_49_transpose_y_0"), val = tensor<bool, []>(false)];
tensor<fp16, [12, 64, 77]> transpose_16 = transpose(perm = var_839_perm_0, x = key_states_35_cast)[name = tensor<string, []>("transpose_16")];
tensor<fp16, [12, 77, 77]> attn_weights_49_cast = matmul(transpose_x = attn_weights_49_transpose_x_0, transpose_y = attn_weights_49_transpose_y_0, x = query_states_17_cast, y = transpose_16)[name = tensor<string, []>("attn_weights_49_cast")];
tensor<int32, [4]> var_841 = const()[name = tensor<string, []>("op_841"), val = tensor<int32, [4]>([1, 12, 77, 77])];
tensor<fp16, [1, 12, 77, 77]> var_842_cast = reshape(shape = var_841, x = attn_weights_49_cast)[name = tensor<string, []>("op_842_cast")];
tensor<fp16, [1, 12, 77, 77]> attn_weights_51_cast = add(x = var_842_cast, y = causal_attention_mask_to_fp16_palettized)[name = tensor<string, []>("attn_weights_51_cast")];
tensor<int32, [3]> var_847 = const()[name = tensor<string, []>("op_847"), val = tensor<int32, [3]>([12, 77, 77])];
tensor<fp16, [12, 77, 77]> input_133_cast = reshape(shape = var_847, x = attn_weights_51_cast)[name = tensor<string, []>("input_133_cast")];
tensor<fp16, [12, 77, 77]> input_135_cast = softmax(axis = var_5, x = input_133_cast)[name = tensor<string, []>("input_135_cast")];
tensor<bool, []> attn_output_49_transpose_x_0 = const()[name = tensor<string, []>("attn_output_49_transpose_x_0"), val = tensor<bool, []>(false)];
tensor<bool, []> attn_output_49_transpose_y_0 = const()[name = tensor<string, []>("attn_output_49_transpose_y_0"), val = tensor<bool, []>(false)];
tensor<fp16, [12, 77, 64]> attn_output_49_cast = matmul(transpose_x = attn_output_49_transpose_x_0, transpose_y = attn_output_49_transpose_y_0, x = input_135_cast, y = value_states_35_cast)[name = tensor<string, []>("attn_output_49_cast")];
tensor<int32, [4]> var_852 = const()[name = tensor<string, []>("op_852"), val = tensor<int32, [4]>([1, 12, 77, 64])];
tensor<fp16, [1, 12, 77, 64]> attn_output_51_cast = reshape(shape = var_852, x = attn_output_49_cast)[name = tensor<string, []>("attn_output_51_cast")];
tensor<int32, [4]> attn_output_53_perm_0 = const()[name = tensor<string, []>("attn_output_53_perm_0"), val = tensor<int32, [4]>([0, 2, 1, 3])];
tensor<int32, [3]> var_855 = const()[name = tensor<string, []>("op_855"), val = tensor<int32, [3]>([1, 77, 768])];
tensor<fp16, [1, 77, 12, 64]> transpose_15 = transpose(perm = attn_output_53_perm_0, x = attn_output_51_cast)[name = tensor<string, []>("transpose_15")];
tensor<fp16, [1, 77, 768]> input_137_cast = reshape(shape = var_855, x = transpose_15)[name = tensor<string, []>("input_137_cast")];
tensor<fp16, [768, 768]> text_encoder_text_model_encoder_layers_8_self_attn_out_proj_weight_to_fp16_palettized = constexpr_lut_to_dense()[indices = tensor<uint8, [442368]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(119891328))), lut = tensor<fp16, [64]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(120333760))), name = tensor<string, []>("text_encoder_text_model_encoder_layers_8_self_attn_out_proj_weight_to_fp16_palettized"), shape = tensor<uint32, [2]>([768, 768])];
tensor<fp16, [768]> text_encoder_text_model_encoder_layers_8_self_attn_out_proj_bias_to_fp16 = const()[name = tensor<string, []>("text_encoder_text_model_encoder_layers_8_self_attn_out_proj_bias_to_fp16"), val = tensor<fp16, [768]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(120333952)))];
tensor<fp16, [1, 77, 768]> hidden_states_51_cast = linear(bias = text_encoder_text_model_encoder_layers_8_self_attn_out_proj_bias_to_fp16, weight = text_encoder_text_model_encoder_layers_8_self_attn_out_proj_weight_to_fp16_palettized, x = input_137_cast)[name = tensor<string, []>("hidden_states_51_cast")];
tensor<fp16, [1, 77, 768]> input_139_cast = add(x = input_131_cast, y = hidden_states_51_cast)[name = tensor<string, []>("input_139_cast")];
tensor<int32, [1]> input_141_axes_0 = const()[name = tensor<string, []>("input_141_axes_0"), val = tensor<int32, [1]>([-1])];
tensor<fp16, [768]> text_encoder_text_model_encoder_layers_8_layer_norm2_weight_to_fp16 = const()[name = tensor<string, []>("text_encoder_text_model_encoder_layers_8_layer_norm2_weight_to_fp16"), val = tensor<fp16, [768]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(120335552)))];
tensor<fp16, [768]> text_encoder_text_model_encoder_layers_8_layer_norm2_bias_to_fp16 = const()[name = tensor<string, []>("text_encoder_text_model_encoder_layers_8_layer_norm2_bias_to_fp16"), val = tensor<fp16, [768]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(120337152)))];
tensor<fp16, [1, 77, 768]> input_141_cast = layer_norm(axes = input_141_axes_0, beta = text_encoder_text_model_encoder_layers_8_layer_norm2_bias_to_fp16, epsilon = var_12_to_fp16, gamma = text_encoder_text_model_encoder_layers_8_layer_norm2_weight_to_fp16, x = input_139_cast)[name = tensor<string, []>("input_141_cast")];
tensor<fp16, [3072, 768]> text_encoder_text_model_encoder_layers_8_mlp_fc1_weight_to_fp16_palettized = constexpr_lut_to_dense()[indices = tensor<uint8, [1769472]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(120338752))), lut = tensor<fp16, [64]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(122108288))), name = tensor<string, []>("text_encoder_text_model_encoder_layers_8_mlp_fc1_weight_to_fp16_palettized"), shape = tensor<uint32, [2]>([3072, 768])];
tensor<fp16, [3072]> text_encoder_text_model_encoder_layers_8_mlp_fc1_bias_to_fp16_palettized = constexpr_lut_to_dense()[indices = tensor<uint8, [2304]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(122108480))), lut = tensor<fp16, [64]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(122110848))), name = tensor<string, []>("text_encoder_text_model_encoder_layers_8_mlp_fc1_bias_to_fp16_palettized"), shape = tensor<uint32, [1]>([3072])];
tensor<fp16, [1, 77, 3072]> input_143_cast = linear(bias = text_encoder_text_model_encoder_layers_8_mlp_fc1_bias_to_fp16_palettized, weight = text_encoder_text_model_encoder_layers_8_mlp_fc1_weight_to_fp16_palettized, x = input_141_cast)[name = tensor<string, []>("input_143_cast")];
tensor<fp16, []> var_870_to_fp16 = const()[name = tensor<string, []>("op_870_to_fp16"), val = tensor<fp16, []>(0x1.b3cp+0)];
tensor<fp16, [1, 77, 3072]> var_871_cast = mul(x = input_143_cast, y = var_870_to_fp16)[name = tensor<string, []>("op_871_cast")];
tensor<fp16, [1, 77, 3072]> var_872_cast = sigmoid(x = var_871_cast)[name = tensor<string, []>("op_872_cast")];
tensor<fp16, [1, 77, 3072]> input_145_cast = mul(x = input_143_cast, y = var_872_cast)[name = tensor<string, []>("input_145_cast")];
tensor<fp16, [768, 3072]> text_encoder_text_model_encoder_layers_8_mlp_fc2_weight_to_fp16_palettized = constexpr_lut_to_dense()[indices = tensor<uint8, [1769472]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(122111040))), lut = tensor<fp16, [64]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(123880576))), name = tensor<string, []>("text_encoder_text_model_encoder_layers_8_mlp_fc2_weight_to_fp16_palettized"), shape = tensor<uint32, [2]>([768, 3072])];
tensor<fp16, [768]> text_encoder_text_model_encoder_layers_8_mlp_fc2_bias_to_fp16 = const()[name = tensor<string, []>("text_encoder_text_model_encoder_layers_8_mlp_fc2_bias_to_fp16"), val = tensor<fp16, [768]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(123880768)))];
tensor<fp16, [1, 77, 768]> hidden_states_53_cast = linear(bias = text_encoder_text_model_encoder_layers_8_mlp_fc2_bias_to_fp16, weight = text_encoder_text_model_encoder_layers_8_mlp_fc2_weight_to_fp16_palettized, x = input_145_cast)[name = tensor<string, []>("hidden_states_53_cast")];
tensor<fp16, [1, 77, 768]> input_147_cast = add(x = input_139_cast, y = hidden_states_53_cast)[name = tensor<string, []>("input_147_cast")];
tensor<int32, [1]> hidden_states_55_axes_0 = const()[name = tensor<string, []>("hidden_states_55_axes_0"), val = tensor<int32, [1]>([-1])];
tensor<fp16, [768]> text_encoder_text_model_encoder_layers_9_layer_norm1_weight_to_fp16 = const()[name = tensor<string, []>("text_encoder_text_model_encoder_layers_9_layer_norm1_weight_to_fp16"), val = tensor<fp16, [768]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(123882368)))];
tensor<fp16, [768]> text_encoder_text_model_encoder_layers_9_layer_norm1_bias_to_fp16 = const()[name = tensor<string, []>("text_encoder_text_model_encoder_layers_9_layer_norm1_bias_to_fp16"), val = tensor<fp16, [768]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(123883968)))];
tensor<fp16, [1, 77, 768]> hidden_states_55_cast = layer_norm(axes = hidden_states_55_axes_0, beta = text_encoder_text_model_encoder_layers_9_layer_norm1_bias_to_fp16, epsilon = var_12_to_fp16, gamma = text_encoder_text_model_encoder_layers_9_layer_norm1_weight_to_fp16, x = input_147_cast)[name = tensor<string, []>("hidden_states_55_cast")];
tensor<fp16, [768, 768]> text_encoder_text_model_encoder_layers_9_self_attn_q_proj_weight_to_fp16_palettized = constexpr_lut_to_dense()[indices = tensor<uint8, [442368]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(123885568))), lut = tensor<fp16, [64]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(124328000))), name = tensor<string, []>("text_encoder_text_model_encoder_layers_9_self_attn_q_proj_weight_to_fp16_palettized"), shape = tensor<uint32, [2]>([768, 768])];
tensor<fp16, [768]> text_encoder_text_model_encoder_layers_9_self_attn_q_proj_bias_to_fp16 = const()[name = tensor<string, []>("text_encoder_text_model_encoder_layers_9_self_attn_q_proj_bias_to_fp16"), val = tensor<fp16, [768]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(124328192)))];
tensor<fp16, [1, 77, 768]> var_896_cast = linear(bias = text_encoder_text_model_encoder_layers_9_self_attn_q_proj_bias_to_fp16, weight = text_encoder_text_model_encoder_layers_9_self_attn_q_proj_weight_to_fp16_palettized, x = hidden_states_55_cast)[name = tensor<string, []>("op_896_cast")];
tensor<fp16, []> var_897_to_fp16 = const()[name = tensor<string, []>("op_897_to_fp16"), val = tensor<fp16, []>(0x1p-3)];
tensor<fp16, [1, 77, 768]> tensor_59_cast = mul(x = var_896_cast, y = var_897_to_fp16)[name = tensor<string, []>("tensor_59_cast")];
tensor<fp16, [768, 768]> text_encoder_text_model_encoder_layers_9_self_attn_k_proj_weight_to_fp16_palettized = constexpr_lut_to_dense()[indices = tensor<uint8, [442368]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(124329792))), lut = tensor<fp16, [64]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(124772224))), name = tensor<string, []>("text_encoder_text_model_encoder_layers_9_self_attn_k_proj_weight_to_fp16_palettized"), shape = tensor<uint32, [2]>([768, 768])];
tensor<fp16, [768]> text_encoder_text_model_encoder_layers_9_self_attn_k_proj_bias_to_fp16 = const()[name = tensor<string, []>("text_encoder_text_model_encoder_layers_9_self_attn_k_proj_bias_to_fp16"), val = tensor<fp16, [768]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(124772416)))];
tensor<fp16, [1, 77, 768]> tensor_55_cast = linear(bias = text_encoder_text_model_encoder_layers_9_self_attn_k_proj_bias_to_fp16, weight = text_encoder_text_model_encoder_layers_9_self_attn_k_proj_weight_to_fp16_palettized, x = hidden_states_55_cast)[name = tensor<string, []>("tensor_55_cast")];
tensor<int32, [4]> var_902 = const()[name = tensor<string, []>("op_902"), val = tensor<int32, [4]>([1, -1, 12, 64])];
tensor<fp16, [1, 77, 12, 64]> var_903_cast = reshape(shape = var_902, x = tensor_55_cast)[name = tensor<string, []>("op_903_cast")];
tensor<int32, [4]> var_904_perm_0 = const()[name = tensor<string, []>("op_904_perm_0"), val = tensor<int32, [4]>([0, 2, 1, 3])];
tensor<fp16, [768, 768]> text_encoder_text_model_encoder_layers_9_self_attn_v_proj_weight_to_fp16_palettized = constexpr_lut_to_dense()[indices = tensor<uint8, [442368]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(124774016))), lut = tensor<fp16, [64]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(125216448))), name = tensor<string, []>("text_encoder_text_model_encoder_layers_9_self_attn_v_proj_weight_to_fp16_palettized"), shape = tensor<uint32, [2]>([768, 768])];
tensor<fp16, [768]> text_encoder_text_model_encoder_layers_9_self_attn_v_proj_bias_to_fp16 = const()[name = tensor<string, []>("text_encoder_text_model_encoder_layers_9_self_attn_v_proj_bias_to_fp16"), val = tensor<fp16, [768]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(125216640)))];
tensor<fp16, [1, 77, 768]> tensor_57_cast = linear(bias = text_encoder_text_model_encoder_layers_9_self_attn_v_proj_bias_to_fp16, weight = text_encoder_text_model_encoder_layers_9_self_attn_v_proj_weight_to_fp16_palettized, x = hidden_states_55_cast)[name = tensor<string, []>("tensor_57_cast")];
tensor<int32, [4]> var_909 = const()[name = tensor<string, []>("op_909"), val = tensor<int32, [4]>([1, -1, 12, 64])];
tensor<fp16, [1, 77, 12, 64]> var_910_cast = reshape(shape = var_909, x = tensor_57_cast)[name = tensor<string, []>("op_910_cast")];
tensor<int32, [4]> var_911_perm_0 = const()[name = tensor<string, []>("op_911_perm_0"), val = tensor<int32, [4]>([0, 2, 1, 3])];
tensor<int32, [4]> var_918 = const()[name = tensor<string, []>("op_918"), val = tensor<int32, [4]>([1, 77, 12, 64])];
tensor<fp16, [1, 77, 12, 64]> var_919_cast = reshape(shape = var_918, x = tensor_59_cast)[name = tensor<string, []>("op_919_cast")];
tensor<int32, [4]> var_920_perm_0 = const()[name = tensor<string, []>("op_920_perm_0"), val = tensor<int32, [4]>([0, 2, 1, 3])];
tensor<int32, [3]> var_922 = const()[name = tensor<string, []>("op_922"), val = tensor<int32, [3]>([12, -1, 64])];
tensor<fp16, [1, 12, 77, 64]> transpose_14 = transpose(perm = var_920_perm_0, x = var_919_cast)[name = tensor<string, []>("transpose_14")];
tensor<fp16, [12, 77, 64]> query_states_19_cast = reshape(shape = var_922, x = transpose_14)[name = tensor<string, []>("query_states_19_cast")];
tensor<int32, [3]> var_924 = const()[name = tensor<string, []>("op_924"), val = tensor<int32, [3]>([12, -1, 64])];
tensor<fp16, [1, 12, 77, 64]> transpose_13 = transpose(perm = var_904_perm_0, x = var_903_cast)[name = tensor<string, []>("transpose_13")];
tensor<fp16, [12, 77, 64]> key_states_39_cast = reshape(shape = var_924, x = transpose_13)[name = tensor<string, []>("key_states_39_cast")];
tensor<int32, [3]> var_926 = const()[name = tensor<string, []>("op_926"), val = tensor<int32, [3]>([12, -1, 64])];
tensor<fp16, [1, 12, 77, 64]> transpose_12 = transpose(perm = var_911_perm_0, x = var_910_cast)[name = tensor<string, []>("transpose_12")];
tensor<fp16, [12, 77, 64]> value_states_39_cast = reshape(shape = var_926, x = transpose_12)[name = tensor<string, []>("value_states_39_cast")];
tensor<int32, [3]> var_929_perm_0 = const()[name = tensor<string, []>("op_929_perm_0"), val = tensor<int32, [3]>([0, 2, 1])];
tensor<bool, []> attn_weights_55_transpose_x_0 = const()[name = tensor<string, []>("attn_weights_55_transpose_x_0"), val = tensor<bool, []>(false)];
tensor<bool, []> attn_weights_55_transpose_y_0 = const()[name = tensor<string, []>("attn_weights_55_transpose_y_0"), val = tensor<bool, []>(false)];
tensor<fp16, [12, 64, 77]> transpose_11 = transpose(perm = var_929_perm_0, x = key_states_39_cast)[name = tensor<string, []>("transpose_11")];
tensor<fp16, [12, 77, 77]> attn_weights_55_cast = matmul(transpose_x = attn_weights_55_transpose_x_0, transpose_y = attn_weights_55_transpose_y_0, x = query_states_19_cast, y = transpose_11)[name = tensor<string, []>("attn_weights_55_cast")];
tensor<int32, [4]> var_931 = const()[name = tensor<string, []>("op_931"), val = tensor<int32, [4]>([1, 12, 77, 77])];
tensor<fp16, [1, 12, 77, 77]> var_932_cast = reshape(shape = var_931, x = attn_weights_55_cast)[name = tensor<string, []>("op_932_cast")];
tensor<fp16, [1, 12, 77, 77]> attn_weights_57_cast = add(x = var_932_cast, y = causal_attention_mask_to_fp16_palettized)[name = tensor<string, []>("attn_weights_57_cast")];
tensor<int32, [3]> var_937 = const()[name = tensor<string, []>("op_937"), val = tensor<int32, [3]>([12, 77, 77])];
tensor<fp16, [12, 77, 77]> input_149_cast = reshape(shape = var_937, x = attn_weights_57_cast)[name = tensor<string, []>("input_149_cast")];
tensor<fp16, [12, 77, 77]> input_151_cast = softmax(axis = var_5, x = input_149_cast)[name = tensor<string, []>("input_151_cast")];
tensor<bool, []> attn_output_55_transpose_x_0 = const()[name = tensor<string, []>("attn_output_55_transpose_x_0"), val = tensor<bool, []>(false)];
tensor<bool, []> attn_output_55_transpose_y_0 = const()[name = tensor<string, []>("attn_output_55_transpose_y_0"), val = tensor<bool, []>(false)];
tensor<fp16, [12, 77, 64]> attn_output_55_cast = matmul(transpose_x = attn_output_55_transpose_x_0, transpose_y = attn_output_55_transpose_y_0, x = input_151_cast, y = value_states_39_cast)[name = tensor<string, []>("attn_output_55_cast")];
tensor<int32, [4]> var_942 = const()[name = tensor<string, []>("op_942"), val = tensor<int32, [4]>([1, 12, 77, 64])];
tensor<fp16, [1, 12, 77, 64]> attn_output_57_cast = reshape(shape = var_942, x = attn_output_55_cast)[name = tensor<string, []>("attn_output_57_cast")];
tensor<int32, [4]> attn_output_59_perm_0 = const()[name = tensor<string, []>("attn_output_59_perm_0"), val = tensor<int32, [4]>([0, 2, 1, 3])];
tensor<int32, [3]> var_945 = const()[name = tensor<string, []>("op_945"), val = tensor<int32, [3]>([1, 77, 768])];
tensor<fp16, [1, 77, 12, 64]> transpose_10 = transpose(perm = attn_output_59_perm_0, x = attn_output_57_cast)[name = tensor<string, []>("transpose_10")];
tensor<fp16, [1, 77, 768]> input_153_cast = reshape(shape = var_945, x = transpose_10)[name = tensor<string, []>("input_153_cast")];
tensor<fp16, [768, 768]> text_encoder_text_model_encoder_layers_9_self_attn_out_proj_weight_to_fp16_palettized = constexpr_lut_to_dense()[indices = tensor<uint8, [442368]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(125218240))), lut = tensor<fp16, [64]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(125660672))), name = tensor<string, []>("text_encoder_text_model_encoder_layers_9_self_attn_out_proj_weight_to_fp16_palettized"), shape = tensor<uint32, [2]>([768, 768])];
tensor<fp16, [768]> text_encoder_text_model_encoder_layers_9_self_attn_out_proj_bias_to_fp16 = const()[name = tensor<string, []>("text_encoder_text_model_encoder_layers_9_self_attn_out_proj_bias_to_fp16"), val = tensor<fp16, [768]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(125660864)))];
tensor<fp16, [1, 77, 768]> hidden_states_57_cast = linear(bias = text_encoder_text_model_encoder_layers_9_self_attn_out_proj_bias_to_fp16, weight = text_encoder_text_model_encoder_layers_9_self_attn_out_proj_weight_to_fp16_palettized, x = input_153_cast)[name = tensor<string, []>("hidden_states_57_cast")];
tensor<fp16, [1, 77, 768]> input_155_cast = add(x = input_147_cast, y = hidden_states_57_cast)[name = tensor<string, []>("input_155_cast")];
tensor<int32, [1]> input_157_axes_0 = const()[name = tensor<string, []>("input_157_axes_0"), val = tensor<int32, [1]>([-1])];
tensor<fp16, [768]> text_encoder_text_model_encoder_layers_9_layer_norm2_weight_to_fp16 = const()[name = tensor<string, []>("text_encoder_text_model_encoder_layers_9_layer_norm2_weight_to_fp16"), val = tensor<fp16, [768]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(125662464)))];
tensor<fp16, [768]> text_encoder_text_model_encoder_layers_9_layer_norm2_bias_to_fp16 = const()[name = tensor<string, []>("text_encoder_text_model_encoder_layers_9_layer_norm2_bias_to_fp16"), val = tensor<fp16, [768]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(125664064)))];
tensor<fp16, [1, 77, 768]> input_157_cast = layer_norm(axes = input_157_axes_0, beta = text_encoder_text_model_encoder_layers_9_layer_norm2_bias_to_fp16, epsilon = var_12_to_fp16, gamma = text_encoder_text_model_encoder_layers_9_layer_norm2_weight_to_fp16, x = input_155_cast)[name = tensor<string, []>("input_157_cast")];
tensor<fp16, [3072, 768]> text_encoder_text_model_encoder_layers_9_mlp_fc1_weight_to_fp16_palettized = constexpr_lut_to_dense()[indices = tensor<uint8, [1769472]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(125665664))), lut = tensor<fp16, [64]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(127435200))), name = tensor<string, []>("text_encoder_text_model_encoder_layers_9_mlp_fc1_weight_to_fp16_palettized"), shape = tensor<uint32, [2]>([3072, 768])];
tensor<fp16, [3072]> text_encoder_text_model_encoder_layers_9_mlp_fc1_bias_to_fp16_palettized = constexpr_lut_to_dense()[indices = tensor<uint8, [2304]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(127435392))), lut = tensor<fp16, [64]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(127437760))), name = tensor<string, []>("text_encoder_text_model_encoder_layers_9_mlp_fc1_bias_to_fp16_palettized"), shape = tensor<uint32, [1]>([3072])];
tensor<fp16, [1, 77, 3072]> input_159_cast = linear(bias = text_encoder_text_model_encoder_layers_9_mlp_fc1_bias_to_fp16_palettized, weight = text_encoder_text_model_encoder_layers_9_mlp_fc1_weight_to_fp16_palettized, x = input_157_cast)[name = tensor<string, []>("input_159_cast")];
tensor<fp16, []> var_960_to_fp16 = const()[name = tensor<string, []>("op_960_to_fp16"), val = tensor<fp16, []>(0x1.b3cp+0)];
tensor<fp16, [1, 77, 3072]> var_961_cast = mul(x = input_159_cast, y = var_960_to_fp16)[name = tensor<string, []>("op_961_cast")];
tensor<fp16, [1, 77, 3072]> var_962_cast = sigmoid(x = var_961_cast)[name = tensor<string, []>("op_962_cast")];
tensor<fp16, [1, 77, 3072]> input_161_cast = mul(x = input_159_cast, y = var_962_cast)[name = tensor<string, []>("input_161_cast")];
tensor<fp16, [768, 3072]> text_encoder_text_model_encoder_layers_9_mlp_fc2_weight_to_fp16_palettized = constexpr_lut_to_dense()[indices = tensor<uint8, [1769472]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(127437952))), lut = tensor<fp16, [64]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(129207488))), name = tensor<string, []>("text_encoder_text_model_encoder_layers_9_mlp_fc2_weight_to_fp16_palettized"), shape = tensor<uint32, [2]>([768, 3072])];
tensor<fp16, [768]> text_encoder_text_model_encoder_layers_9_mlp_fc2_bias_to_fp16 = const()[name = tensor<string, []>("text_encoder_text_model_encoder_layers_9_mlp_fc2_bias_to_fp16"), val = tensor<fp16, [768]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(129207680)))];
tensor<fp16, [1, 77, 768]> hidden_states_59_cast = linear(bias = text_encoder_text_model_encoder_layers_9_mlp_fc2_bias_to_fp16, weight = text_encoder_text_model_encoder_layers_9_mlp_fc2_weight_to_fp16_palettized, x = input_161_cast)[name = tensor<string, []>("hidden_states_59_cast")];
tensor<fp16, [1, 77, 768]> input_163_cast = add(x = input_155_cast, y = hidden_states_59_cast)[name = tensor<string, []>("input_163_cast")];
tensor<int32, [1]> hidden_states_61_axes_0 = const()[name = tensor<string, []>("hidden_states_61_axes_0"), val = tensor<int32, [1]>([-1])];
tensor<fp16, [768]> text_encoder_text_model_encoder_layers_10_layer_norm1_weight_to_fp16 = const()[name = tensor<string, []>("text_encoder_text_model_encoder_layers_10_layer_norm1_weight_to_fp16"), val = tensor<fp16, [768]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(129209280)))];
tensor<fp16, [768]> text_encoder_text_model_encoder_layers_10_layer_norm1_bias_to_fp16 = const()[name = tensor<string, []>("text_encoder_text_model_encoder_layers_10_layer_norm1_bias_to_fp16"), val = tensor<fp16, [768]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(129210880)))];
tensor<fp16, [1, 77, 768]> hidden_states_61_cast = layer_norm(axes = hidden_states_61_axes_0, beta = text_encoder_text_model_encoder_layers_10_layer_norm1_bias_to_fp16, epsilon = var_12_to_fp16, gamma = text_encoder_text_model_encoder_layers_10_layer_norm1_weight_to_fp16, x = input_163_cast)[name = tensor<string, []>("hidden_states_61_cast")];
tensor<fp16, [768, 768]> text_encoder_text_model_encoder_layers_10_self_attn_q_proj_weight_to_fp16_palettized = constexpr_lut_to_dense()[indices = tensor<uint8, [442368]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(129212480))), lut = tensor<fp16, [64]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(129654912))), name = tensor<string, []>("text_encoder_text_model_encoder_layers_10_self_attn_q_proj_weight_to_fp16_palettized"), shape = tensor<uint32, [2]>([768, 768])];
tensor<fp16, [768]> text_encoder_text_model_encoder_layers_10_self_attn_q_proj_bias_to_fp16 = const()[name = tensor<string, []>("text_encoder_text_model_encoder_layers_10_self_attn_q_proj_bias_to_fp16"), val = tensor<fp16, [768]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(129655104)))];
tensor<fp16, [1, 77, 768]> var_986_cast = linear(bias = text_encoder_text_model_encoder_layers_10_self_attn_q_proj_bias_to_fp16, weight = text_encoder_text_model_encoder_layers_10_self_attn_q_proj_weight_to_fp16_palettized, x = hidden_states_61_cast)[name = tensor<string, []>("op_986_cast")];
tensor<fp16, []> var_987_to_fp16 = const()[name = tensor<string, []>("op_987_to_fp16"), val = tensor<fp16, []>(0x1p-3)];
tensor<fp16, [1, 77, 768]> tensor_65_cast = mul(x = var_986_cast, y = var_987_to_fp16)[name = tensor<string, []>("tensor_65_cast")];
tensor<fp16, [768, 768]> text_encoder_text_model_encoder_layers_10_self_attn_k_proj_weight_to_fp16_palettized = constexpr_lut_to_dense()[indices = tensor<uint8, [442368]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(129656704))), lut = tensor<fp16, [64]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(130099136))), name = tensor<string, []>("text_encoder_text_model_encoder_layers_10_self_attn_k_proj_weight_to_fp16_palettized"), shape = tensor<uint32, [2]>([768, 768])];
tensor<fp16, [768]> text_encoder_text_model_encoder_layers_10_self_attn_k_proj_bias_to_fp16 = const()[name = tensor<string, []>("text_encoder_text_model_encoder_layers_10_self_attn_k_proj_bias_to_fp16"), val = tensor<fp16, [768]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(130099328)))];
tensor<fp16, [1, 77, 768]> tensor_61_cast = linear(bias = text_encoder_text_model_encoder_layers_10_self_attn_k_proj_bias_to_fp16, weight = text_encoder_text_model_encoder_layers_10_self_attn_k_proj_weight_to_fp16_palettized, x = hidden_states_61_cast)[name = tensor<string, []>("tensor_61_cast")];
tensor<int32, [4]> var_992 = const()[name = tensor<string, []>("op_992"), val = tensor<int32, [4]>([1, -1, 12, 64])];
tensor<fp16, [1, 77, 12, 64]> var_993_cast = reshape(shape = var_992, x = tensor_61_cast)[name = tensor<string, []>("op_993_cast")];
tensor<int32, [4]> var_994_perm_0 = const()[name = tensor<string, []>("op_994_perm_0"), val = tensor<int32, [4]>([0, 2, 1, 3])];
tensor<fp16, [768, 768]> text_encoder_text_model_encoder_layers_10_self_attn_v_proj_weight_to_fp16_palettized = constexpr_lut_to_dense()[indices = tensor<uint8, [442368]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(130100928))), lut = tensor<fp16, [64]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(130543360))), name = tensor<string, []>("text_encoder_text_model_encoder_layers_10_self_attn_v_proj_weight_to_fp16_palettized"), shape = tensor<uint32, [2]>([768, 768])];
tensor<fp16, [768]> text_encoder_text_model_encoder_layers_10_self_attn_v_proj_bias_to_fp16 = const()[name = tensor<string, []>("text_encoder_text_model_encoder_layers_10_self_attn_v_proj_bias_to_fp16"), val = tensor<fp16, [768]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(130543552)))];
tensor<fp16, [1, 77, 768]> tensor_63_cast = linear(bias = text_encoder_text_model_encoder_layers_10_self_attn_v_proj_bias_to_fp16, weight = text_encoder_text_model_encoder_layers_10_self_attn_v_proj_weight_to_fp16_palettized, x = hidden_states_61_cast)[name = tensor<string, []>("tensor_63_cast")];
tensor<int32, [4]> var_999 = const()[name = tensor<string, []>("op_999"), val = tensor<int32, [4]>([1, -1, 12, 64])];
tensor<fp16, [1, 77, 12, 64]> var_1000_cast = reshape(shape = var_999, x = tensor_63_cast)[name = tensor<string, []>("op_1000_cast")];
tensor<int32, [4]> var_1001_perm_0 = const()[name = tensor<string, []>("op_1001_perm_0"), val = tensor<int32, [4]>([0, 2, 1, 3])];
tensor<int32, [4]> var_1008 = const()[name = tensor<string, []>("op_1008"), val = tensor<int32, [4]>([1, 77, 12, 64])];
tensor<fp16, [1, 77, 12, 64]> var_1009_cast = reshape(shape = var_1008, x = tensor_65_cast)[name = tensor<string, []>("op_1009_cast")];
tensor<int32, [4]> var_1010_perm_0 = const()[name = tensor<string, []>("op_1010_perm_0"), val = tensor<int32, [4]>([0, 2, 1, 3])];
tensor<int32, [3]> var_1012 = const()[name = tensor<string, []>("op_1012"), val = tensor<int32, [3]>([12, -1, 64])];
tensor<fp16, [1, 12, 77, 64]> transpose_9 = transpose(perm = var_1010_perm_0, x = var_1009_cast)[name = tensor<string, []>("transpose_9")];
tensor<fp16, [12, 77, 64]> query_states_21_cast = reshape(shape = var_1012, x = transpose_9)[name = tensor<string, []>("query_states_21_cast")];
tensor<int32, [3]> var_1014 = const()[name = tensor<string, []>("op_1014"), val = tensor<int32, [3]>([12, -1, 64])];
tensor<fp16, [1, 12, 77, 64]> transpose_8 = transpose(perm = var_994_perm_0, x = var_993_cast)[name = tensor<string, []>("transpose_8")];
tensor<fp16, [12, 77, 64]> key_states_43_cast = reshape(shape = var_1014, x = transpose_8)[name = tensor<string, []>("key_states_43_cast")];
tensor<int32, [3]> var_1016 = const()[name = tensor<string, []>("op_1016"), val = tensor<int32, [3]>([12, -1, 64])];
tensor<fp16, [1, 12, 77, 64]> transpose_7 = transpose(perm = var_1001_perm_0, x = var_1000_cast)[name = tensor<string, []>("transpose_7")];
tensor<fp16, [12, 77, 64]> value_states_43_cast = reshape(shape = var_1016, x = transpose_7)[name = tensor<string, []>("value_states_43_cast")];
tensor<int32, [3]> var_1019_perm_0 = const()[name = tensor<string, []>("op_1019_perm_0"), val = tensor<int32, [3]>([0, 2, 1])];
tensor<bool, []> attn_weights_61_transpose_x_0 = const()[name = tensor<string, []>("attn_weights_61_transpose_x_0"), val = tensor<bool, []>(false)];
tensor<bool, []> attn_weights_61_transpose_y_0 = const()[name = tensor<string, []>("attn_weights_61_transpose_y_0"), val = tensor<bool, []>(false)];
tensor<fp16, [12, 64, 77]> transpose_6 = transpose(perm = var_1019_perm_0, x = key_states_43_cast)[name = tensor<string, []>("transpose_6")];
tensor<fp16, [12, 77, 77]> attn_weights_61_cast = matmul(transpose_x = attn_weights_61_transpose_x_0, transpose_y = attn_weights_61_transpose_y_0, x = query_states_21_cast, y = transpose_6)[name = tensor<string, []>("attn_weights_61_cast")];
tensor<int32, [4]> var_1021 = const()[name = tensor<string, []>("op_1021"), val = tensor<int32, [4]>([1, 12, 77, 77])];
tensor<fp16, [1, 12, 77, 77]> var_1022_cast = reshape(shape = var_1021, x = attn_weights_61_cast)[name = tensor<string, []>("op_1022_cast")];
tensor<fp16, [1, 12, 77, 77]> attn_weights_63_cast = add(x = var_1022_cast, y = causal_attention_mask_to_fp16_palettized)[name = tensor<string, []>("attn_weights_63_cast")];
tensor<int32, [3]> var_1027 = const()[name = tensor<string, []>("op_1027"), val = tensor<int32, [3]>([12, 77, 77])];
tensor<fp16, [12, 77, 77]> input_165_cast = reshape(shape = var_1027, x = attn_weights_63_cast)[name = tensor<string, []>("input_165_cast")];
tensor<fp16, [12, 77, 77]> input_167_cast = softmax(axis = var_5, x = input_165_cast)[name = tensor<string, []>("input_167_cast")];
tensor<bool, []> attn_output_61_transpose_x_0 = const()[name = tensor<string, []>("attn_output_61_transpose_x_0"), val = tensor<bool, []>(false)];
tensor<bool, []> attn_output_61_transpose_y_0 = const()[name = tensor<string, []>("attn_output_61_transpose_y_0"), val = tensor<bool, []>(false)];
tensor<fp16, [12, 77, 64]> attn_output_61_cast = matmul(transpose_x = attn_output_61_transpose_x_0, transpose_y = attn_output_61_transpose_y_0, x = input_167_cast, y = value_states_43_cast)[name = tensor<string, []>("attn_output_61_cast")];
tensor<int32, [4]> var_1032 = const()[name = tensor<string, []>("op_1032"), val = tensor<int32, [4]>([1, 12, 77, 64])];
tensor<fp16, [1, 12, 77, 64]> attn_output_63_cast = reshape(shape = var_1032, x = attn_output_61_cast)[name = tensor<string, []>("attn_output_63_cast")];
tensor<int32, [4]> attn_output_65_perm_0 = const()[name = tensor<string, []>("attn_output_65_perm_0"), val = tensor<int32, [4]>([0, 2, 1, 3])];
tensor<int32, [3]> var_1035 = const()[name = tensor<string, []>("op_1035"), val = tensor<int32, [3]>([1, 77, 768])];
tensor<fp16, [1, 77, 12, 64]> transpose_5 = transpose(perm = attn_output_65_perm_0, x = attn_output_63_cast)[name = tensor<string, []>("transpose_5")];
tensor<fp16, [1, 77, 768]> input_169_cast = reshape(shape = var_1035, x = transpose_5)[name = tensor<string, []>("input_169_cast")];
tensor<fp16, [768, 768]> text_encoder_text_model_encoder_layers_10_self_attn_out_proj_weight_to_fp16_palettized = constexpr_lut_to_dense()[indices = tensor<uint8, [442368]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(130545152))), lut = tensor<fp16, [64]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(130987584))), name = tensor<string, []>("text_encoder_text_model_encoder_layers_10_self_attn_out_proj_weight_to_fp16_palettized"), shape = tensor<uint32, [2]>([768, 768])];
tensor<fp16, [768]> text_encoder_text_model_encoder_layers_10_self_attn_out_proj_bias_to_fp16 = const()[name = tensor<string, []>("text_encoder_text_model_encoder_layers_10_self_attn_out_proj_bias_to_fp16"), val = tensor<fp16, [768]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(130987776)))];
tensor<fp16, [1, 77, 768]> hidden_states_63_cast = linear(bias = text_encoder_text_model_encoder_layers_10_self_attn_out_proj_bias_to_fp16, weight = text_encoder_text_model_encoder_layers_10_self_attn_out_proj_weight_to_fp16_palettized, x = input_169_cast)[name = tensor<string, []>("hidden_states_63_cast")];
tensor<fp16, [1, 77, 768]> input_171_cast = add(x = input_163_cast, y = hidden_states_63_cast)[name = tensor<string, []>("input_171_cast")];
tensor<int32, [1]> input_173_axes_0 = const()[name = tensor<string, []>("input_173_axes_0"), val = tensor<int32, [1]>([-1])];
tensor<fp16, [768]> text_encoder_text_model_encoder_layers_10_layer_norm2_weight_to_fp16 = const()[name = tensor<string, []>("text_encoder_text_model_encoder_layers_10_layer_norm2_weight_to_fp16"), val = tensor<fp16, [768]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(130989376)))];
tensor<fp16, [768]> text_encoder_text_model_encoder_layers_10_layer_norm2_bias_to_fp16 = const()[name = tensor<string, []>("text_encoder_text_model_encoder_layers_10_layer_norm2_bias_to_fp16"), val = tensor<fp16, [768]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(130990976)))];
tensor<fp16, [1, 77, 768]> input_173_cast = layer_norm(axes = input_173_axes_0, beta = text_encoder_text_model_encoder_layers_10_layer_norm2_bias_to_fp16, epsilon = var_12_to_fp16, gamma = text_encoder_text_model_encoder_layers_10_layer_norm2_weight_to_fp16, x = input_171_cast)[name = tensor<string, []>("input_173_cast")];
tensor<fp16, [3072, 768]> text_encoder_text_model_encoder_layers_10_mlp_fc1_weight_to_fp16_palettized = constexpr_lut_to_dense()[indices = tensor<uint8, [1769472]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(130992576))), lut = tensor<fp16, [64]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(132762112))), name = tensor<string, []>("text_encoder_text_model_encoder_layers_10_mlp_fc1_weight_to_fp16_palettized"), shape = tensor<uint32, [2]>([3072, 768])];
tensor<fp16, [3072]> text_encoder_text_model_encoder_layers_10_mlp_fc1_bias_to_fp16_palettized = constexpr_lut_to_dense()[indices = tensor<uint8, [2304]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(132762304))), lut = tensor<fp16, [64]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(132764672))), name = tensor<string, []>("text_encoder_text_model_encoder_layers_10_mlp_fc1_bias_to_fp16_palettized"), shape = tensor<uint32, [1]>([3072])];
tensor<fp16, [1, 77, 3072]> input_175_cast = linear(bias = text_encoder_text_model_encoder_layers_10_mlp_fc1_bias_to_fp16_palettized, weight = text_encoder_text_model_encoder_layers_10_mlp_fc1_weight_to_fp16_palettized, x = input_173_cast)[name = tensor<string, []>("input_175_cast")];
tensor<fp16, []> var_1050_to_fp16 = const()[name = tensor<string, []>("op_1050_to_fp16"), val = tensor<fp16, []>(0x1.b3cp+0)];
tensor<fp16, [1, 77, 3072]> var_1051_cast = mul(x = input_175_cast, y = var_1050_to_fp16)[name = tensor<string, []>("op_1051_cast")];
tensor<fp16, [1, 77, 3072]> var_1052_cast = sigmoid(x = var_1051_cast)[name = tensor<string, []>("op_1052_cast")];
tensor<fp16, [1, 77, 3072]> input_177_cast = mul(x = input_175_cast, y = var_1052_cast)[name = tensor<string, []>("input_177_cast")];
tensor<fp16, [768, 3072]> text_encoder_text_model_encoder_layers_10_mlp_fc2_weight_to_fp16_palettized = constexpr_lut_to_dense()[indices = tensor<uint8, [1769472]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(132764864))), lut = tensor<fp16, [64]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(134534400))), name = tensor<string, []>("text_encoder_text_model_encoder_layers_10_mlp_fc2_weight_to_fp16_palettized"), shape = tensor<uint32, [2]>([768, 3072])];
tensor<fp16, [768]> text_encoder_text_model_encoder_layers_10_mlp_fc2_bias_to_fp16 = const()[name = tensor<string, []>("text_encoder_text_model_encoder_layers_10_mlp_fc2_bias_to_fp16"), val = tensor<fp16, [768]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(134534592)))];
tensor<fp16, [1, 77, 768]> hidden_states_65_cast = linear(bias = text_encoder_text_model_encoder_layers_10_mlp_fc2_bias_to_fp16, weight = text_encoder_text_model_encoder_layers_10_mlp_fc2_weight_to_fp16_palettized, x = input_177_cast)[name = tensor<string, []>("hidden_states_65_cast")];
tensor<fp16, [1, 77, 768]> input_179_cast = add(x = input_171_cast, y = hidden_states_65_cast)[name = tensor<string, []>("input_179_cast")];
tensor<int32, [1]> hidden_states_67_axes_0 = const()[name = tensor<string, []>("hidden_states_67_axes_0"), val = tensor<int32, [1]>([-1])];
tensor<fp16, [768]> text_encoder_text_model_encoder_layers_11_layer_norm1_weight_to_fp16 = const()[name = tensor<string, []>("text_encoder_text_model_encoder_layers_11_layer_norm1_weight_to_fp16"), val = tensor<fp16, [768]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(134536192)))];
tensor<fp16, [768]> text_encoder_text_model_encoder_layers_11_layer_norm1_bias_to_fp16 = const()[name = tensor<string, []>("text_encoder_text_model_encoder_layers_11_layer_norm1_bias_to_fp16"), val = tensor<fp16, [768]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(134537792)))];
tensor<fp16, [1, 77, 768]> hidden_states_67_cast = layer_norm(axes = hidden_states_67_axes_0, beta = text_encoder_text_model_encoder_layers_11_layer_norm1_bias_to_fp16, epsilon = var_12_to_fp16, gamma = text_encoder_text_model_encoder_layers_11_layer_norm1_weight_to_fp16, x = input_179_cast)[name = tensor<string, []>("hidden_states_67_cast")];
tensor<fp16, [768, 768]> text_encoder_text_model_encoder_layers_11_self_attn_q_proj_weight_to_fp16_palettized = constexpr_lut_to_dense()[indices = tensor<uint8, [442368]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(134539392))), lut = tensor<fp16, [64]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(134981824))), name = tensor<string, []>("text_encoder_text_model_encoder_layers_11_self_attn_q_proj_weight_to_fp16_palettized"), shape = tensor<uint32, [2]>([768, 768])];
tensor<fp16, [768]> text_encoder_text_model_encoder_layers_11_self_attn_q_proj_bias_to_fp16 = const()[name = tensor<string, []>("text_encoder_text_model_encoder_layers_11_self_attn_q_proj_bias_to_fp16"), val = tensor<fp16, [768]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(134982016)))];
tensor<fp16, [1, 77, 768]> var_1076_cast = linear(bias = text_encoder_text_model_encoder_layers_11_self_attn_q_proj_bias_to_fp16, weight = text_encoder_text_model_encoder_layers_11_self_attn_q_proj_weight_to_fp16_palettized, x = hidden_states_67_cast)[name = tensor<string, []>("op_1076_cast")];
tensor<fp16, []> var_1077_to_fp16 = const()[name = tensor<string, []>("op_1077_to_fp16"), val = tensor<fp16, []>(0x1p-3)];
tensor<fp16, [1, 77, 768]> tensor_cast = mul(x = var_1076_cast, y = var_1077_to_fp16)[name = tensor<string, []>("tensor_cast")];
tensor<fp16, [768, 768]> text_encoder_text_model_encoder_layers_11_self_attn_k_proj_weight_to_fp16_palettized = constexpr_lut_to_dense()[indices = tensor<uint8, [442368]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(134983616))), lut = tensor<fp16, [64]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(135426048))), name = tensor<string, []>("text_encoder_text_model_encoder_layers_11_self_attn_k_proj_weight_to_fp16_palettized"), shape = tensor<uint32, [2]>([768, 768])];
tensor<fp16, [768]> text_encoder_text_model_encoder_layers_11_self_attn_k_proj_bias_to_fp16 = const()[name = tensor<string, []>("text_encoder_text_model_encoder_layers_11_self_attn_k_proj_bias_to_fp16"), val = tensor<fp16, [768]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(135426240)))];
tensor<fp16, [1, 77, 768]> tensor_67_cast = linear(bias = text_encoder_text_model_encoder_layers_11_self_attn_k_proj_bias_to_fp16, weight = text_encoder_text_model_encoder_layers_11_self_attn_k_proj_weight_to_fp16_palettized, x = hidden_states_67_cast)[name = tensor<string, []>("tensor_67_cast")];
tensor<int32, [4]> var_1082 = const()[name = tensor<string, []>("op_1082"), val = tensor<int32, [4]>([1, -1, 12, 64])];
tensor<fp16, [1, 77, 12, 64]> var_1083_cast = reshape(shape = var_1082, x = tensor_67_cast)[name = tensor<string, []>("op_1083_cast")];
tensor<int32, [4]> var_1084_perm_0 = const()[name = tensor<string, []>("op_1084_perm_0"), val = tensor<int32, [4]>([0, 2, 1, 3])];
tensor<fp16, [768, 768]> text_encoder_text_model_encoder_layers_11_self_attn_v_proj_weight_to_fp16_palettized = constexpr_lut_to_dense()[indices = tensor<uint8, [442368]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(135427840))), lut = tensor<fp16, [64]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(135870272))), name = tensor<string, []>("text_encoder_text_model_encoder_layers_11_self_attn_v_proj_weight_to_fp16_palettized"), shape = tensor<uint32, [2]>([768, 768])];
tensor<fp16, [768]> text_encoder_text_model_encoder_layers_11_self_attn_v_proj_bias_to_fp16 = const()[name = tensor<string, []>("text_encoder_text_model_encoder_layers_11_self_attn_v_proj_bias_to_fp16"), val = tensor<fp16, [768]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(135870464)))];
tensor<fp16, [1, 77, 768]> tensor_69_cast = linear(bias = text_encoder_text_model_encoder_layers_11_self_attn_v_proj_bias_to_fp16, weight = text_encoder_text_model_encoder_layers_11_self_attn_v_proj_weight_to_fp16_palettized, x = hidden_states_67_cast)[name = tensor<string, []>("tensor_69_cast")];
tensor<int32, [4]> var_1089 = const()[name = tensor<string, []>("op_1089"), val = tensor<int32, [4]>([1, -1, 12, 64])];
tensor<fp16, [1, 77, 12, 64]> var_1090_cast = reshape(shape = var_1089, x = tensor_69_cast)[name = tensor<string, []>("op_1090_cast")];
tensor<int32, [4]> var_1091_perm_0 = const()[name = tensor<string, []>("op_1091_perm_0"), val = tensor<int32, [4]>([0, 2, 1, 3])];
tensor<int32, [4]> var_1098 = const()[name = tensor<string, []>("op_1098"), val = tensor<int32, [4]>([1, 77, 12, 64])];
tensor<fp16, [1, 77, 12, 64]> var_1099_cast = reshape(shape = var_1098, x = tensor_cast)[name = tensor<string, []>("op_1099_cast")];
tensor<int32, [4]> var_1100_perm_0 = const()[name = tensor<string, []>("op_1100_perm_0"), val = tensor<int32, [4]>([0, 2, 1, 3])];
tensor<int32, [3]> var_1102 = const()[name = tensor<string, []>("op_1102"), val = tensor<int32, [3]>([12, -1, 64])];
tensor<fp16, [1, 12, 77, 64]> transpose_4 = transpose(perm = var_1100_perm_0, x = var_1099_cast)[name = tensor<string, []>("transpose_4")];
tensor<fp16, [12, 77, 64]> query_states_cast = reshape(shape = var_1102, x = transpose_4)[name = tensor<string, []>("query_states_cast")];
tensor<int32, [3]> var_1104 = const()[name = tensor<string, []>("op_1104"), val = tensor<int32, [3]>([12, -1, 64])];
tensor<fp16, [1, 12, 77, 64]> transpose_3 = transpose(perm = var_1084_perm_0, x = var_1083_cast)[name = tensor<string, []>("transpose_3")];
tensor<fp16, [12, 77, 64]> key_states_cast = reshape(shape = var_1104, x = transpose_3)[name = tensor<string, []>("key_states_cast")];
tensor<int32, [3]> var_1106 = const()[name = tensor<string, []>("op_1106"), val = tensor<int32, [3]>([12, -1, 64])];
tensor<fp16, [1, 12, 77, 64]> transpose_2 = transpose(perm = var_1091_perm_0, x = var_1090_cast)[name = tensor<string, []>("transpose_2")];
tensor<fp16, [12, 77, 64]> value_states_cast = reshape(shape = var_1106, x = transpose_2)[name = tensor<string, []>("value_states_cast")];
tensor<int32, [3]> var_1109_perm_0 = const()[name = tensor<string, []>("op_1109_perm_0"), val = tensor<int32, [3]>([0, 2, 1])];
tensor<bool, []> attn_weights_67_transpose_x_0 = const()[name = tensor<string, []>("attn_weights_67_transpose_x_0"), val = tensor<bool, []>(false)];
tensor<bool, []> attn_weights_67_transpose_y_0 = const()[name = tensor<string, []>("attn_weights_67_transpose_y_0"), val = tensor<bool, []>(false)];
tensor<fp16, [12, 64, 77]> transpose_1 = transpose(perm = var_1109_perm_0, x = key_states_cast)[name = tensor<string, []>("transpose_1")];
tensor<fp16, [12, 77, 77]> attn_weights_67_cast = matmul(transpose_x = attn_weights_67_transpose_x_0, transpose_y = attn_weights_67_transpose_y_0, x = query_states_cast, y = transpose_1)[name = tensor<string, []>("attn_weights_67_cast")];
tensor<int32, [4]> var_1111 = const()[name = tensor<string, []>("op_1111"), val = tensor<int32, [4]>([1, 12, 77, 77])];
tensor<fp16, [1, 12, 77, 77]> var_1112_cast = reshape(shape = var_1111, x = attn_weights_67_cast)[name = tensor<string, []>("op_1112_cast")];
tensor<fp16, [1, 12, 77, 77]> attn_weights_69_cast = add(x = var_1112_cast, y = causal_attention_mask_to_fp16_palettized)[name = tensor<string, []>("attn_weights_69_cast")];
tensor<int32, [3]> var_1117 = const()[name = tensor<string, []>("op_1117"), val = tensor<int32, [3]>([12, 77, 77])];
tensor<fp16, [12, 77, 77]> input_181_cast = reshape(shape = var_1117, x = attn_weights_69_cast)[name = tensor<string, []>("input_181_cast")];
tensor<fp16, [12, 77, 77]> input_183_cast = softmax(axis = var_5, x = input_181_cast)[name = tensor<string, []>("input_183_cast")];
tensor<bool, []> attn_output_67_transpose_x_0 = const()[name = tensor<string, []>("attn_output_67_transpose_x_0"), val = tensor<bool, []>(false)];
tensor<bool, []> attn_output_67_transpose_y_0 = const()[name = tensor<string, []>("attn_output_67_transpose_y_0"), val = tensor<bool, []>(false)];
tensor<fp16, [12, 77, 64]> attn_output_67_cast = matmul(transpose_x = attn_output_67_transpose_x_0, transpose_y = attn_output_67_transpose_y_0, x = input_183_cast, y = value_states_cast)[name = tensor<string, []>("attn_output_67_cast")];
tensor<int32, [4]> var_1122 = const()[name = tensor<string, []>("op_1122"), val = tensor<int32, [4]>([1, 12, 77, 64])];
tensor<fp16, [1, 12, 77, 64]> attn_output_69_cast = reshape(shape = var_1122, x = attn_output_67_cast)[name = tensor<string, []>("attn_output_69_cast")];
tensor<int32, [4]> attn_output_perm_0 = const()[name = tensor<string, []>("attn_output_perm_0"), val = tensor<int32, [4]>([0, 2, 1, 3])];
tensor<int32, [3]> var_1125 = const()[name = tensor<string, []>("op_1125"), val = tensor<int32, [3]>([1, 77, 768])];
tensor<fp16, [1, 77, 12, 64]> transpose_0 = transpose(perm = attn_output_perm_0, x = attn_output_69_cast)[name = tensor<string, []>("transpose_0")];
tensor<fp16, [1, 77, 768]> input_185_cast = reshape(shape = var_1125, x = transpose_0)[name = tensor<string, []>("input_185_cast")];
tensor<fp16, [768, 768]> text_encoder_text_model_encoder_layers_11_self_attn_out_proj_weight_to_fp16_palettized = constexpr_lut_to_dense()[indices = tensor<uint8, [442368]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(135872064))), lut = tensor<fp16, [64]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(136314496))), name = tensor<string, []>("text_encoder_text_model_encoder_layers_11_self_attn_out_proj_weight_to_fp16_palettized"), shape = tensor<uint32, [2]>([768, 768])];
tensor<fp16, [768]> text_encoder_text_model_encoder_layers_11_self_attn_out_proj_bias_to_fp16 = const()[name = tensor<string, []>("text_encoder_text_model_encoder_layers_11_self_attn_out_proj_bias_to_fp16"), val = tensor<fp16, [768]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(136314688)))];
tensor<fp16, [1, 77, 768]> hidden_states_69_cast = linear(bias = text_encoder_text_model_encoder_layers_11_self_attn_out_proj_bias_to_fp16, weight = text_encoder_text_model_encoder_layers_11_self_attn_out_proj_weight_to_fp16_palettized, x = input_185_cast)[name = tensor<string, []>("hidden_states_69_cast")];
tensor<fp16, [1, 77, 768]> input_187_cast = add(x = input_179_cast, y = hidden_states_69_cast)[name = tensor<string, []>("input_187_cast")];
tensor<int32, [1]> input_189_axes_0 = const()[name = tensor<string, []>("input_189_axes_0"), val = tensor<int32, [1]>([-1])];
tensor<fp16, [768]> text_encoder_text_model_encoder_layers_11_layer_norm2_weight_to_fp16 = const()[name = tensor<string, []>("text_encoder_text_model_encoder_layers_11_layer_norm2_weight_to_fp16"), val = tensor<fp16, [768]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(136316288)))];
tensor<fp16, [768]> text_encoder_text_model_encoder_layers_11_layer_norm2_bias_to_fp16 = const()[name = tensor<string, []>("text_encoder_text_model_encoder_layers_11_layer_norm2_bias_to_fp16"), val = tensor<fp16, [768]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(136317888)))];
tensor<fp16, [1, 77, 768]> input_189_cast = layer_norm(axes = input_189_axes_0, beta = text_encoder_text_model_encoder_layers_11_layer_norm2_bias_to_fp16, epsilon = var_12_to_fp16, gamma = text_encoder_text_model_encoder_layers_11_layer_norm2_weight_to_fp16, x = input_187_cast)[name = tensor<string, []>("input_189_cast")];
tensor<fp16, [3072, 768]> text_encoder_text_model_encoder_layers_11_mlp_fc1_weight_to_fp16_palettized = constexpr_lut_to_dense()[indices = tensor<uint8, [1769472]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(136319488))), lut = tensor<fp16, [64]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(138089024))), name = tensor<string, []>("text_encoder_text_model_encoder_layers_11_mlp_fc1_weight_to_fp16_palettized"), shape = tensor<uint32, [2]>([3072, 768])];
tensor<fp16, [3072]> text_encoder_text_model_encoder_layers_11_mlp_fc1_bias_to_fp16_palettized = constexpr_lut_to_dense()[indices = tensor<uint8, [2304]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(138089216))), lut = tensor<fp16, [64]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(138091584))), name = tensor<string, []>("text_encoder_text_model_encoder_layers_11_mlp_fc1_bias_to_fp16_palettized"), shape = tensor<uint32, [1]>([3072])];
tensor<fp16, [1, 77, 3072]> input_191_cast = linear(bias = text_encoder_text_model_encoder_layers_11_mlp_fc1_bias_to_fp16_palettized, weight = text_encoder_text_model_encoder_layers_11_mlp_fc1_weight_to_fp16_palettized, x = input_189_cast)[name = tensor<string, []>("input_191_cast")];
tensor<fp16, []> var_1140_to_fp16 = const()[name = tensor<string, []>("op_1140_to_fp16"), val = tensor<fp16, []>(0x1.b3cp+0)];
tensor<fp16, [1, 77, 3072]> var_1141_cast = mul(x = input_191_cast, y = var_1140_to_fp16)[name = tensor<string, []>("op_1141_cast")];
tensor<fp16, [1, 77, 3072]> var_1142_cast = sigmoid(x = var_1141_cast)[name = tensor<string, []>("op_1142_cast")];
tensor<fp16, [1, 77, 3072]> input_193_cast = mul(x = input_191_cast, y = var_1142_cast)[name = tensor<string, []>("input_193_cast")];
tensor<fp16, [768, 3072]> text_encoder_text_model_encoder_layers_11_mlp_fc2_weight_to_fp16_palettized = constexpr_lut_to_dense()[indices = tensor<uint8, [1769472]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(138091776))), lut = tensor<fp16, [64]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(139861312))), name = tensor<string, []>("text_encoder_text_model_encoder_layers_11_mlp_fc2_weight_to_fp16_palettized"), shape = tensor<uint32, [2]>([768, 3072])];
tensor<fp16, [768]> text_encoder_text_model_encoder_layers_11_mlp_fc2_bias_to_fp16 = const()[name = tensor<string, []>("text_encoder_text_model_encoder_layers_11_mlp_fc2_bias_to_fp16"), val = tensor<fp16, [768]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(139861504)))];
tensor<fp16, [1, 77, 768]> hidden_states_cast = linear(bias = text_encoder_text_model_encoder_layers_11_mlp_fc2_bias_to_fp16, weight = text_encoder_text_model_encoder_layers_11_mlp_fc2_weight_to_fp16_palettized, x = input_193_cast)[name = tensor<string, []>("hidden_states_cast")];
tensor<fp16, [1, 77, 768]> input_cast = add(x = input_187_cast, y = hidden_states_cast)[name = tensor<string, []>("input_cast")];
tensor<int32, [1]> last_hidden_state_axes_0 = const()[name = tensor<string, []>("last_hidden_state_axes_0"), val = tensor<int32, [1]>([-1])];
tensor<fp16, [768]> text_encoder_text_model_final_layer_norm_weight_to_fp16 = const()[name = tensor<string, []>("text_encoder_text_model_final_layer_norm_weight_to_fp16"), val = tensor<fp16, [768]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(139863104)))];
tensor<fp16, [768]> text_encoder_text_model_final_layer_norm_bias_to_fp16 = const()[name = tensor<string, []>("text_encoder_text_model_final_layer_norm_bias_to_fp16"), val = tensor<fp16, [768]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(139864704)))];
tensor<fp16, [1, 77, 768]> last_hidden_state_cast = layer_norm(axes = last_hidden_state_axes_0, beta = text_encoder_text_model_final_layer_norm_bias_to_fp16, epsilon = var_12_to_fp16, gamma = text_encoder_text_model_final_layer_norm_weight_to_fp16, x = input_cast)[name = tensor<string, []>("last_hidden_state_cast")];
tensor<string, []> last_hidden_state_cast_to_fp32_dtype_0 = const()[name = tensor<string, []>("last_hidden_state_cast_to_fp32_dtype_0"), val = tensor<string, []>("fp32")];
tensor<int32, [1]> var_1153 = const()[name = tensor<string, []>("op_1153"), val = tensor<int32, [1]>([0])];
tensor<int32, [1]> var_1155 = reduce_argmax(axis = var_5, keep_dims = var_6, x = cast_2)[name = tensor<string, []>("op_1155")];
tensor<int32, []> stack_0_axis_0 = const()[name = tensor<string, []>("stack_0_axis_0"), val = tensor<int32, []>(1)];
tensor<int32, [1, 2]> stack_0 = stack(axis = stack_0_axis_0, values = (var_1153, var_1155))[name = tensor<string, []>("stack_0")];
tensor<int32, []> var_1157_transpose_batch_dims_0 = const()[name = tensor<string, []>("op_1157_transpose_batch_dims_0"), val = tensor<int32, []>(0)];
tensor<fp16, [1, 768]> var_1157_transpose_cast = gather_nd(batch_dims = var_1157_transpose_batch_dims_0, indices = stack_0, x = last_hidden_state_cast)[name = tensor<string, []>("op_1157_transpose_cast")];
tensor<string, []> var_1157_cast_to_fp32_dtype_0 = const()[name = tensor<string, []>("op_1157_cast_to_fp32_dtype_0"), val = tensor<string, []>("fp32")];
tensor<fp32, [1, 77, 768]> last_hidden_state = cast(dtype = last_hidden_state_cast_to_fp32_dtype_0, x = last_hidden_state_cast)[name = tensor<string, []>("cast_0")];
tensor<fp32, [1, 768]> pooled_outputs = cast(dtype = var_1157_cast_to_fp32_dtype_0, x = var_1157_transpose_cast)[name = tensor<string, []>("cast_1")];
} -> (last_hidden_state, pooled_outputs);
} |