Model save
Browse files
README.md
ADDED
@@ -0,0 +1,85 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
base_model: indolem/indobert-base-uncased
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
metrics:
|
7 |
+
- precision
|
8 |
+
- recall
|
9 |
+
- f1
|
10 |
+
- accuracy
|
11 |
+
model-index:
|
12 |
+
- name: nerugm-base-2
|
13 |
+
results: []
|
14 |
+
---
|
15 |
+
|
16 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
17 |
+
should probably proofread and complete it, then remove this comment. -->
|
18 |
+
|
19 |
+
# nerugm-base-2
|
20 |
+
|
21 |
+
This model is a fine-tuned version of [indolem/indobert-base-uncased](https://huggingface.co/indolem/indobert-base-uncased) on an unknown dataset.
|
22 |
+
It achieves the following results on the evaluation set:
|
23 |
+
- Loss: 0.3243
|
24 |
+
- Precision: 0.7942
|
25 |
+
- Recall: 0.8879
|
26 |
+
- F1: 0.8384
|
27 |
+
- Accuracy: 0.9605
|
28 |
+
|
29 |
+
## Model description
|
30 |
+
|
31 |
+
More information needed
|
32 |
+
|
33 |
+
## Intended uses & limitations
|
34 |
+
|
35 |
+
More information needed
|
36 |
+
|
37 |
+
## Training and evaluation data
|
38 |
+
|
39 |
+
More information needed
|
40 |
+
|
41 |
+
## Training procedure
|
42 |
+
|
43 |
+
### Training hyperparameters
|
44 |
+
|
45 |
+
The following hyperparameters were used during training:
|
46 |
+
- learning_rate: 5e-05
|
47 |
+
- train_batch_size: 16
|
48 |
+
- eval_batch_size: 64
|
49 |
+
- seed: 42
|
50 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
51 |
+
- lr_scheduler_type: linear
|
52 |
+
- num_epochs: 20.0
|
53 |
+
|
54 |
+
### Training results
|
55 |
+
|
56 |
+
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
57 |
+
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
58 |
+
| 0.3438 | 1.0 | 106 | 0.1653 | 0.7345 | 0.8407 | 0.7840 | 0.9492 |
|
59 |
+
| 0.1133 | 2.0 | 212 | 0.1340 | 0.7677 | 0.8968 | 0.8272 | 0.9570 |
|
60 |
+
| 0.0736 | 3.0 | 318 | 0.1448 | 0.7769 | 0.8732 | 0.8222 | 0.9590 |
|
61 |
+
| 0.0473 | 4.0 | 424 | 0.1585 | 0.7888 | 0.8702 | 0.8275 | 0.9612 |
|
62 |
+
| 0.0311 | 5.0 | 530 | 0.1845 | 0.7895 | 0.8850 | 0.8345 | 0.9605 |
|
63 |
+
| 0.0179 | 6.0 | 636 | 0.2145 | 0.7867 | 0.8702 | 0.8263 | 0.9602 |
|
64 |
+
| 0.0126 | 7.0 | 742 | 0.2225 | 0.7789 | 0.8732 | 0.8234 | 0.9567 |
|
65 |
+
| 0.0091 | 8.0 | 848 | 0.2556 | 0.7839 | 0.8879 | 0.8326 | 0.9582 |
|
66 |
+
| 0.0041 | 9.0 | 954 | 0.2574 | 0.7973 | 0.8702 | 0.8322 | 0.9610 |
|
67 |
+
| 0.0036 | 10.0 | 1060 | 0.3124 | 0.7702 | 0.8702 | 0.8172 | 0.9555 |
|
68 |
+
| 0.0038 | 11.0 | 1166 | 0.2837 | 0.7905 | 0.8791 | 0.8324 | 0.9607 |
|
69 |
+
| 0.0017 | 12.0 | 1272 | 0.3035 | 0.7795 | 0.8761 | 0.825 | 0.9575 |
|
70 |
+
| 0.0015 | 13.0 | 1378 | 0.3068 | 0.7874 | 0.8850 | 0.8333 | 0.9605 |
|
71 |
+
| 0.0012 | 14.0 | 1484 | 0.3286 | 0.7839 | 0.8879 | 0.8326 | 0.9577 |
|
72 |
+
| 0.0006 | 15.0 | 1590 | 0.3137 | 0.7984 | 0.8879 | 0.8408 | 0.9607 |
|
73 |
+
| 0.0008 | 16.0 | 1696 | 0.3065 | 0.8011 | 0.8791 | 0.8383 | 0.9617 |
|
74 |
+
| 0.0014 | 17.0 | 1802 | 0.3305 | 0.7885 | 0.8909 | 0.8366 | 0.9590 |
|
75 |
+
| 0.0005 | 18.0 | 1908 | 0.3245 | 0.7895 | 0.8850 | 0.8345 | 0.9597 |
|
76 |
+
| 0.0004 | 19.0 | 2014 | 0.3248 | 0.7921 | 0.8879 | 0.8373 | 0.9602 |
|
77 |
+
| 0.0003 | 20.0 | 2120 | 0.3243 | 0.7942 | 0.8879 | 0.8384 | 0.9605 |
|
78 |
+
|
79 |
+
|
80 |
+
### Framework versions
|
81 |
+
|
82 |
+
- Transformers 4.39.3
|
83 |
+
- Pytorch 2.3.0+cu121
|
84 |
+
- Datasets 2.19.1
|
85 |
+
- Tokenizers 0.15.2
|