--- library_name: transformers license: apache-2.0 base_model: Helsinki-NLP/opus-mt-mul-en tags: - generated_from_trainer - code switching - hinglish - code mixing metrics: - bleu model-index: - name: marianMT_hin_eng_cs results: [] language: - hi - en datasets: - ar5entum/hindi-english-code-mixed --- # marianMT_hin_eng_cs This model is a fine-tuned version of [Helsinki-NLP/opus-mt-mul-en](https://huggingface.co/Helsinki-NLP/opus-mt-mul-en) on [ar5entum/hindi-english-code-mixed](https://huggingface.co/datasets/ar5entum/hindi-english-code-mixed) dataset. It achieves the following results on the evaluation set: - Loss: 0.1450 - Bleu: 77.8649 - Gen Len: 74.8945 ## Model description The model is specifically designed to translate Hindi text written in Devanagari script into a mixed format where Hindi words are retained in Devanagari while English words are converted to Roman script. This model effectively handles the complexities of code-switching, producing output that accurately reflects the intended language mixing. Example: | Hindi | Hindi + English CS | |:-----------------------------------------:|:-----------------------------------------:| |तो वो टोटली मेरे घर के प्लान पे डिपेंड करता है |to वो totally मेरे घर के plan पे depend करता है | |मांग लो भाई बहुत नेसेसरी है |मांग लो भाई बहुत necessary है | |टेलीविज़न में क्या प्रोग्राम चल रहा है? |television में क्या program चल रहा है? | ```python from transformers import MarianMTModel, MarianTokenizer class HinEngCS: def __init__(self, model_name='ar5entum/marianMT_hin_eng_cs'): self.model_name = model_name self.tokenizer = MarianTokenizer.from_pretrained(model_name) self.model = MarianMTModel.from_pretrained(model_name) def predict(self, input_text): tokenized_text = self.tokenizer(input_text, return_tensors='pt') translated = self.model.generate(**tokenized_text) translated_text = self.tokenizer.decode(translated[0], skip_special_tokens=True) return translated_text model = HinEngCS() input_text = "आज मैं नानयांग टेक्नोलॉजिकल यूनिवर्सिटी में अनेक समझौते होते हुए देखूंगा जो कि उच्च शिक्षा साइंस टेक्नोलॉजी और इनोवेशन में हमारे सहयोग को और बढ़ाएंगे।" model.predict(input_text) # आज मैं नानयांग technological university में अनेक समझौते होते हुए देखूंगा जो कि उच्च शिक्षा science technology और innovation में हमारे सहयोग को और बढ़ाएंगे। ``` ## Training Procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 50 - eval_batch_size: 50 - seed: 42 - distributed_type: multi-GPU - num_devices: 2 - total_train_batch_size: 100 - total_eval_batch_size: 100 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 30.0 ### Training results | Training Loss | Epoch | Step | Bleu | Gen Len | Validation Loss | |:-------------:|:-----:|:-----:|:-------:|:-------:|:---------------:| | 1.5823 | 1.0 | 1118 | 11.6257 | 77.1622 | 1.1778 | | 0.921 | 2.0 | 2236 | 33.2917 | 76.1459 | 0.6357 | | 0.6472 | 3.0 | 3354 | 47.3533 | 75.9194 | 0.4504 | | 0.5246 | 4.0 | 4472 | 55.2169 | 75.6871 | 0.3579 | | 0.4228 | 5.0 | 5590 | 60.8262 | 75.5777 | 0.3041 | | 0.3745 | 6.0 | 6708 | 64.8987 | 75.4424 | 0.2693 | | 0.3552 | 7.0 | 7826 | 67.7607 | 75.2438 | 0.2455 | | 0.3324 | 8.0 | 8944 | 69.635 | 75.1036 | 0.2274 | | 0.2912 | 9.0 | 10062 | 71.3086 | 75.0326 | 0.2117 | | 0.2591 | 10.0 | 11180 | 72.392 | 74.9607 | 0.2001 | | 0.2471 | 11.0 | 12298 | 73.4758 | 74.9251 | 0.1899 | | 0.236 | 12.0 | 13416 | 74.4219 | 74.833 | 0.1822 | | 0.2265 | 13.0 | 14534 | 75.1435 | 74.9069 | 0.1745 | | 0.2152 | 14.0 | 15652 | 75.7614 | 74.7409 | 0.1695 | | 0.2078 | 15.0 | 16770 | 76.2353 | 74.7092 | 0.1641 | | 0.2048 | 16.0 | 17888 | 76.7381 | 74.7274 | 0.1593 | | 0.1975 | 17.0 | 19006 | 76.9954 | 74.7217 | 0.1559 | | 0.1943 | 18.0 | 20124 | 77.421 | 74.6641 | 0.1524 | | 0.1987 | 19.0 | 21242 | 77.8231 | 74.6833 | 0.1495 | | 0.1855 | 20.0 | 22360 | 78.0784 | 74.6804 | 0.1472 | ### Framework versions - Transformers 4.45.0.dev0 - Pytorch 2.4.0+cu121 - Datasets 2.21.0 - Tokenizers 0.19.1