--- library_name: transformers license: apache-2.0 base_model: distilbert/distilbert-base-uncased tags: - generated_from_trainer metrics: - accuracy model-index: - name: crypto_fundamental_news_text_classifier-distilbert-base-uncased results: [] --- # crypto_fundamental_news_text_classifier-distilbert-base-uncased This model is a fine-tuned version of [distilbert/distilbert-base-uncased](https://huggingface.co/distilbert/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3716 - Accuracy: 0.9194 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.0913 | 1.0 | 8 | 1.1070 | 0.2097 | | 1.0507 | 2.0 | 16 | 1.0611 | 0.4032 | | 0.9942 | 3.0 | 24 | 0.9997 | 0.5161 | | 0.8923 | 4.0 | 32 | 0.9018 | 0.5968 | | 0.7789 | 5.0 | 40 | 0.8149 | 0.6774 | | 0.675 | 6.0 | 48 | 0.7557 | 0.7903 | | 0.6047 | 7.0 | 56 | 0.6935 | 0.7903 | | 0.5335 | 8.0 | 64 | 0.6468 | 0.8548 | | 0.4758 | 9.0 | 72 | 0.6036 | 0.8871 | | 0.43 | 10.0 | 80 | 0.5686 | 0.8871 | | 0.3939 | 11.0 | 88 | 0.5312 | 0.9032 | | 0.349 | 12.0 | 96 | 0.4888 | 0.9194 | | 0.3127 | 13.0 | 104 | 0.4539 | 0.9194 | | 0.2806 | 14.0 | 112 | 0.4281 | 0.9194 | | 0.2624 | 15.0 | 120 | 0.4062 | 0.9194 | | 0.2362 | 16.0 | 128 | 0.3953 | 0.9194 | | 0.2231 | 17.0 | 136 | 0.3839 | 0.9194 | | 0.2161 | 18.0 | 144 | 0.3799 | 0.9194 | | 0.2023 | 19.0 | 152 | 0.3753 | 0.9194 | | 0.1982 | 20.0 | 160 | 0.3716 | 0.9194 | ### Framework versions - Transformers 4.47.0.dev0 - Pytorch 2.4.0+cu121 - Datasets 3.0.2 - Tokenizers 0.20.0