araffin commited on
Commit
4e5e4dd
1 Parent(s): ebac973

First commit

Browse files
.gitattributes CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
28
+ *.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: DQN
10
+ results:
11
+ - metrics:
12
+ - type: mean_reward
13
+ value: 256.40 +/- 20.75
14
+ name: mean_reward
15
+ task:
16
+ type: reinforcement-learning
17
+ name: reinforcement-learning
18
+ dataset:
19
+ name: LunarLander-v2
20
+ type: LunarLander-v2
21
+ ---
22
+
23
+ # **DQN** Agent playing **LunarLander-v2**
24
+ This is a trained model of a **DQN** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
25
+
26
+ ## Usage (with Stable-baselines3)
27
+ TODO: Add your code
28
+
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVMAAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLmRxbi5wb2xpY2llc5SMCURRTlBvbGljeZSTlC4=", "__module__": "stable_baselines3.dqn.policies", "__doc__": "\n Policy class with Q-Value Net and target net for DQN\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function DQNPolicy.__init__ at 0x7ff48fd84b90>", "_build": "<function DQNPolicy._build at 0x7ff48fd84c20>", "make_q_net": "<function DQNPolicy.make_q_net at 0x7ff48fd84cb0>", "forward": "<function DQNPolicy.forward at 0x7ff48fd84d40>", "_predict": "<function DQNPolicy._predict at 0x7ff48fd84dd0>", "_get_constructor_parameters": "<function DQNPolicy._get_constructor_parameters at 0x7ff48fd84e60>", "set_training_mode": "<function DQNPolicy.set_training_mode at 0x7ff48fd84ef0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7ff48fd6ea50>"}, "verbose": 1, "policy_kwargs": {"net_arch": [256, 256]}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVLgsAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwSX19yYW5kb21zdGF0ZV9jdG9ylJOUjAdNVDE5OTM3lIWUUpR9lCiMDWJpdF9nZW5lcmF0b3KUaBOMBXN0YXRllH2UKIwDa2V5lIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolsAJAAAAAAAAi+0H7kPAgdBuF030bXyF7n2u5dW6SEXCM6tqhq5MMNXq+cbpYKU+zAzhfMglymx9sMzDGYTfQRH4kTtg/+PN+E7XQ0i+0/yR1PtBH9/3gPBWXKxyu2AO2p/qkjxmLGWCZn0+UiHyaWNFHtBiQEMwiw2h6lpKvsKhHsuTR7djb2nBoI9EED7FcI/Py4KJ0iVYC8sIO5cWOx1VGU9DIoJg9G0f6njGxrQHddg3EiOpmds/fQhkuA/kWAV7Va/RqY6vV5SoT9jGIrGTSFCeb7+WZvi7bZcNThjmSkQstVQl/dPZI7Ll5uJeZG5B+wVrCaTDUUWD9Cew/l8Tclds8cKF02COYnS9amO651a18QxFuLfWa+xUS5gtI13kUx1cFz6jes4rJsKvad24n7XVjXU8kOOiCrYsZKSounjnkBpP29ErNdk1kDclaSZ/NZefVVVZCB3LURHzKqp0/mPWP45BBqmpqY+LMVvPfRij7KRor9630PK3rE+ZV03ezCoeVY5tzaYqn4d0EwaxEyXo9YSHq4R7F8NMWMvZ49dL1Eha10yI8Iw7YeTAfPHth26TM2i7GzMBna2KP8p+PuIYi60Rvn4p5iqBdZ0ULEvnxwBo2M6KK6KSmEI4DviMhemrjdL4Gwlwi2EPjBJ7JojJKepsNijm3DOqaGrDj2T9AAIjPcYAC6CWc237RhfxnR0A2zXlgLgm3Q86s3nBMI6Qp7jfrwLc0iUeqVQYAxIzL9S7Nqo64o6s+CM6sj49MfRSTMyIy7YaMd9uAPg3chlEYSQu6Hq/IN3t2/7wAMbWD91cSwIfANN3aClYZXcmq9laWrrdG13K1vbwyR3JhIRDgrQpcM6DtLxzjNfXgWiTBXMMpXhm7D7VyFEp7fS0Q0SMoeOOUcaUv2552el+Cw2VlGHWzFHqbSERirbnjEsanughZkWdGTTonv1D5JKMeiVEgP3jATz8pSd8Hz15Mrwit3PvJZe8jxIfVziMOT02+1yoccP3V5lyu+B60DKF89P0rQ1QgqYwbJ4rLAZTjiJQzsji6nCAFPmEYjS+Z9RqMrH73T01LM8HlsNNWh8sFBW1ynzwQVavYR5ZbvFKTTBSMYuLBc+HQ+tSiG6mp4P6YoIQrxJtiBlB2CNP0VBnv3mTl3KlnZyiJCkUd2zwnPPXzplSpqneFZAPw0d2ORoIf3GzfOWgrGAaFOJFoJ+8mo3wS+hON980FI+07me6Ltb2okjb+aVEdiCa9Pz2Dyph0Sh6mMYhw035NBSry2bniV26UBwQG7nY/V4/00wb+BOHaCVo+yZs/6GoegBTGg+lGdXtNaL/2eukMrUKatC3vxywAULK/H5OG9B/3UVf38mPn+UxvR5S00pms/5JPRdmxKbaS5K29pI4t5iFRUUt15YGyVRmnlbnpEi3k4g4/4CiPCztQM+iYxCgmNMg09INWFruoe2T5KUamUHVl87uolOSX2gVRw7W482NjYUi0RIf/HaJjW+hlV1jpOFkgtWK5w/n3LekLH3WuAYJmcTWKBx62n7Ohw3tW6pAs6RFoFF0yqgwO2qICg9ZnVMuVRxELcQS1QoKjJeTc8uSD1sHmTFUowjszbtgh3HYgHJPeuSkK76v6lkIgW4qVd/0ZIVH5u0PgbFLt3/yjYp/Kj+N2+C0BI4stxrKLuWTSIwTvOAIWK0vLNjR6J5hHNbYjQviMnvvXAV93sWtzUk7Ic2hwekP49NfshHfNlyjMvf7bNo6ubF66X75u4wIrEoqp3NexJjwGBOeNd82ZgZ0cudhIj0KLAhp1zE/HwbfEzex1an5h+qv98TXWlotPxM8VFAKjsoAEBpLkd1lWNTNi7xfZjIk8GwDEiIchoJSDlJ5H7FYgFYfwaEiZnXj/TyqEAZmPHzMGvSr/mGTEPMz5DhR09/PNbxa48W05hXprxSp8UNdgH2AKLYVYYkVxCp32+cw2S0Xel2+zkqJxvswuqMjIG5QF7/S6P1hh+oUjng+vaPQI+TigR9jsIjSnmYgrvbDLxYOU464rUydraaJyLsiY7dHNlGBM2TPq2p6m5V/u5VEgvh5Tsbe4PiTKuEO6dt02HNjeesCs0zg8zSEqlLyJY63L70Rhv5p/D5KPr30cl7CZMpQwx+YCBwIxHqPh0iYQmXF6IqtRIXzfR/nIiFXD+ab+eJMWcPS2sszudDz/gWk1lAiaiEHhx7gysqWgus5miGMO5NpkNJcGcJKf1CcbYuRkUxgGMFWenhvk/Z4Qq8jxW09o2vfmwgj9UHVS9qklPSKQMHKxjNoHewUoZOfLA4JRidZCjLmNOb1QxJ+Wz6Ylvv3tHiEOmJidZ8Mv6+vFmBKjQn5mFOXKO+SSWDFJRG+DESY49mdHeK+mPcXc4BlijFN8pqgBmEkQNDANMJdpgn8l3czwSNQ3X3pQQsAuxPJVWll+3/xdxqW+nvu3X9K5cshtK8vcc9Hf9vgckA+VFtfGImemSTN4PrE3pnsiAzZWkSr6dMj7ZiaCWMZsHA2+pT7pVsthkamlnXMrUxOGJI+/e23i1ffBBHBDyLhPfYsSwDFRcrRBjeLitbyAzt5LNmQP5ZmEg9W63psrWE6b6cgTbHnQdjS29ANVCfoemnE1huWCRUTaprVY3dRLBZ6QMN6f99AK1GUtxZmCjpQtPbKhzqR3rm+qz7Mc+t9ufhpp5JktB7CPrj3RqHoXsEV7nv90hmBlItmKHKC76YOCtD4kWXe9RB44HEGkKNfpANu3P9QXCvR4WLdHzeLM2QYkIX57qnH+3wbPjSJZ3yU5nIR4VtNbqB7ut5EsObBkhSRPt5Fc7n+m5vqEUiQN5fv6XQ5e99rmKMpRlKhb8zBsEOIU5NQJeYCjDfFRSqVPcHu6YuV2HLZwmJmgoR4HA/lCD9YCia2qGdov8Z+ehtjeHgmSq7scxhYQUTQdFwdqJBaQtYy+RlnEgdoAYaPWQiylfPHUolc654nhWPUhYykmO6VXX18uRPoVob43P79piLjIaXSD6wGF2rSOT0z8gmCprxrZjz1UC2PQHQhNblE89oYdyCR5vDZrkJirmINMInquEMniyhOnA+VEiON/MUrekVhiAYZ+vtI1koLTNdcLJVdBUDFcUnlNcXCITQ5eEdLjlk3BtJudqBNto8CA1OsL+YwD6c0bwrKIwXRXgwG3tVntoqpdmglnp8KptkY8mozou6d0cCTm7gjW/HOmF5pUcG/WL3IQpGfKh7ZB2Hni7VhGjZf5OKJhigkf1+mN0gbgQFYN/c2RH4A0OtRyEhXK3NMIEFjQ9mOeRGBvqNyUUsrP0Pg12uLMIFI//jQo8acuGJSlGgJjAJ1NJSJiIeUUpQoSwNoDU5OTkr/////Sv////9LAHSUYk1wAoWUjAFDlHSUUpSMA3Bvc5RLfHWMCWhhc19nYXVzc5RLAIwFZ2F1c3OURwAAAAAAAAAAdWJ1Yi4=", "n": 4, "_shape": [], "dtype": "int64", "_np_random": "RandomState(MT19937)"}, "n_envs": 1, "num_timesteps": 400000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1651785049.8402338, "learning_rate": 0.001, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVywIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxOL2hvbWUvYW50b25pbi9Eb2N1bWVudHMvcmwvc3RhYmxlLWJhc2VsaW5lczMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxOL2hvbWUvYW50b25pbi9Eb2N1bWVudHMvcmwvc3RhYmxlLWJhc2VsaW5lczMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9QYk3S8an8hZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAKZuAb6Fv9Q6NuUXM1nNGjL4kZO8qQUeswAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAAGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAKZuAb6Fv9Q6plL9suXwMzL3kZO83jYFNAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="}, "_episode_num": 1120, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.600001, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVWBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI7ZqQ1phvY0CUhpRSlIwBbJRNuQOMAXSUR0CLJl0yxiXqdX2UKGgGaAloD0MI3PC76VYCckCUhpRSlGgVTQgBaBZHQIsrA593KSx1fZQoaAZoCWgPQwgbKzHPSjNuwJSGlFKUaBVNTAFoFkdAizEdm6GxlnV9lChoBmgJaA9DCHO7l/tkH29AlIaUUpRoFUvxaBZHQIs1QQ6IWP91fZQoaAZoCWgPQwjWGd8XlxxCQJSGlFKUaBVLa2gWR0CLNw0F8ohIdX2UKGgGaAloD0MIEaj+QSQxSkCUhpRSlGgVS5JoFkdAizl3CsOoYXV9lChoBmgJaA9DCA/tYwW/LnBAlIaUUpRoFUv9aBZHQIs9v+OwPiF1fZQoaAZoCWgPQwiqtpvgmzRHQJSGlFKUaBVLX2gWR0CLP1lXiiqRdX2UKGgGaAloD0MIqyFxjyVDY8CUhpRSlGgVTbMDaBZHQItS57qptJp1fZQoaAZoCWgPQwgKZHYWvZMvQJSGlFKUaBVLZ2gWR0CLVJzZpSJkdX2UKGgGaAloD0MIfxKfO8FcbkCUhpRSlGgVTQ8CaBZHQIteKCOFQEZ1fZQoaAZoCWgPQwjYfcfw2Gs4wJSGlFKUaBVLZ2gWR0CLX9slb/wRdX2UKGgGaAloD0MIYaWCiqr5QUCUhpRSlGgVS/1oFkdAi2Q6r/82rHV9lChoBmgJaA9DCBiXqrTFTlvAlIaUUpRoFU0TAWgWR0CLaPoUSIxhdX2UKGgGaAloD0MI0ova/SopUcCUhpRSlGgVTegDaBZHQIt8ZwwTM7l1fZQoaAZoCWgPQwj0bcFS3X1swJSGlFKUaBVNxgNoFkdAi5FBWPtD2XV9lChoBmgJaA9DCDihEAGHEmLAlIaUUpRoFU3oA2gWR0CLpNUo8ZDRdX2UKGgGaAloD0MIJCao4dsQYcCUhpRSlGgVTegDaBZHQIu6105lvqF1fZQoaAZoCWgPQwh2+kFd5BpyQJSGlFKUaBVNAwFoFkdAi79iyQgcLnV9lChoBmgJaA9DCIO/X8yWYW9AlIaUUpRoFU1+AWgWR0CLxi0w8GLUdX2UKGgGaAloD0MINIC3QMKjckCUhpRSlGgVTRoBaBZHQIvLBLK3d9F1fZQoaAZoCWgPQwiN74tLVbBgwJSGlFKUaBVNZAFoFkdAi9FrOzIFNnV9lChoBmgJaA9DCFoQyvs4kklAlIaUUpRoFUuRaBZHQIvT1elbeM11fZQoaAZoCWgPQwi1xMpoJIdwQJSGlFKUaBVL62gWR0CL19RAKOT8dX2UKGgGaAloD0MIY1+y8WCJbUCUhpRSlGgVTR4DaBZHQIvo3dhy8z11fZQoaAZoCWgPQwjXE10X/mdxQJSGlFKUaBVNqwFoFkdAi/EFtTDO1XV9lChoBmgJaA9DCKLw2To4hmNAlIaUUpRoFU3oA2gWR0CMBJfqHGjsdX2UKGgGaAloD0MIZjBGJIpwb0CUhpRSlGgVTSkBaBZHQIwJ54dIXj51fZQoaAZoCWgPQwjG4cyv5p1wQJSGlFKUaBVNWgJoFkdAjBWidjG1hXV9lChoBmgJaA9DCPxQacTM23JAlIaUUpRoFUvUaBZHQIwZOhXbM5h1fZQoaAZoCWgPQwi/nUSE/2VwQJSGlFKUaBVN5wFoFkdAjCIuIInjQ3V9lChoBmgJaA9DCOi/B6/d1m9AlIaUUpRoFU1wAmgWR0CMLacslLOBdX2UKGgGaAloD0MIrRiuDoBWcUCUhpRSlGgVTTMBaBZHQIwzP9vS+g11fZQoaAZoCWgPQwic+GpHcTlVwJSGlFKUaBVN6ANoFkdAjEcSrHU+cHV9lChoBmgJaA9DCGbBxB+F0nFAlIaUUpRoFU0rAWgWR0CMTG+bmU4adX2UKGgGaAloD0MIjlph+t5qb0CUhpRSlGgVTUoCaBZHQIxXVK/VRUF1fZQoaAZoCWgPQwj7lGOyOPRwQJSGlFKUaBVLuWgWR0CMWncnE2pAdX2UKGgGaAloD0MIiSR6GQUncECUhpRSlGgVTS4BaBZHQIxfv09QoCx1fZQoaAZoCWgPQwg57//jBGJwQJSGlFKUaBVNNgFoFkdAjGUt4iX6ZnV9lChoBmgJaA9DCKq2m+CbQkFAlIaUUpRoFUt1aBZHQIxnKXQdCE91fZQoaAZoCWgPQwiIuaRqu5ZpwJSGlFKUaBVNsgNoFkdAjHwx9G7SRnV9lChoBmgJaA9DCAlupGzRMnJAlIaUUpRoFU1jAmgWR0CMh+YrrgO0dX2UKGgGaAloD0MI8xyR71KzUUCUhpRSlGgVS6xoFkdAjIrNRm9QGnV9lChoBmgJaA9DCPKVQEqsRHFAlIaUUpRoFU2RAWgWR0CMkffBvaUSdX2UKGgGaAloD0MIV5V9VwS/PUCUhpRSlGgVS2NoFkdAjJOlrl/6PHV9lChoBmgJaA9DCA7d7A8UDHJAlIaUUpRoFU1dAWgWR0CMmdsj3VTadX2UKGgGaAloD0MIwR2oUx6tJ0CUhpRSlGgVS2poFkdAjJum+9Jz1nV9lChoBmgJaA9DCD5BYrt731XAlIaUUpRoFU3oA2gWR0CMru+pOvdNdX2UKGgGaAloD0MIuFZ72At9a0CUhpRSlGgVTaIBaBZHQIy2e5Dqnm91fZQoaAZoCWgPQwh1BduIZxZwQJSGlFKUaBVNNwFoFkdAjLvnfl6qsHV9lChoBmgJaA9DCFm/mZgu1kRAlIaUUpRoFUuUaBZHQIy+bQb+98J1fZQoaAZoCWgPQwhH5LuUumduQJSGlFKUaBVNZQFoFkdAjMTYbKifx3V9lChoBmgJaA9DCHanO08800fAlIaUUpRoFUttaBZHQIzGrEcbR4R1fZQoaAZoCWgPQwiZDTLJyDkmwJSGlFKUaBVLa2gWR0CMyHb/wRXfdX2UKGgGaAloD0MIRtJu9LHqbkCUhpRSlGgVS+doFkdAjMxeMQ2/BXV9lChoBmgJaA9DCA3BcRm3o21AlIaUUpRoFUvjaBZHQIzQQR5C4SZ1fZQoaAZoCWgPQwjulA7Wf55xQJSGlFKUaBVNvANoFkdAjOJxkNFz+3V9lChoBmgJaA9DCKKzzCIUBG5AlIaUUpRoFUvTaBZHQIzl+5SWJJp1fZQoaAZoCWgPQwjTMecZ+zVxQJSGlFKUaBVNUQFoFkdAjOvlzU7SzHV9lChoBmgJaA9DCLkXmBWKLEDAlIaUUpRoFUtyaBZHQIztwEyLyc11fZQoaAZoCWgPQwjHnGfsS246QJSGlFKUaBVLkGgWR0CM8CWbgCOndX2UKGgGaAloD0MIkE3yI346b0CUhpRSlGgVTRkCaBZHQIz6PPVurIZ1fZQoaAZoCWgPQwgIOlrV0htwQJSGlFKUaBVLqWgWR0CM/Rf8/D+BdX2UKGgGaAloD0MIGmt/Z3sUEMCUhpRSlGgVS1BoFkdAjP5o2OyVwHV9lChoBmgJaA9DCF7yP/k7H3FAlIaUUpRoFUvaaBZHQI0CFfb9If91fZQoaAZoCWgPQwjhC5OpgnNJQJSGlFKUaBVLiWgWR0CNBFIOH310dX2UKGgGaAloD0MI2SH+YUtZS0CUhpRSlGgVS5BoFkdAjQbAfMfRu3V9lChoBmgJaA9DCAcoDTWK3W1AlIaUUpRoFUvLaBZHQI0KLlPrOZ91fZQoaAZoCWgPQwg5QgbybDtvQJSGlFKUaBVL+2gWR0CNDnsImgJ1dX2UKGgGaAloD0MIaHdIMUD0b0CUhpRSlGgVS7VoFkdAjRF8xKxs23V9lChoBmgJaA9DCJoGRfMAY3NAlIaUUpRoFU1dAWgWR0CNF7fBN21VdX2UKGgGaAloD0MIzQNY5Nfgb0CUhpRSlGgVTRUBaBZHQI0chhF3IMl1fZQoaAZoCWgPQwhvfsNEQyZxQJSGlFKUaBVNBwFoFkdAjSEEJKJ2uHV9lChoBmgJaA9DCLQ4Y5hT/3JAlIaUUpRoFU3zAWgWR0CNKbGax5cDdX2UKGgGaAloD0MIz4QmieWMcUCUhpRSlGgVTXkBaBZHQI0wfRLK3d91fZQoaAZoCWgPQwjhmdAkMSZzQJSGlFKUaBVNoAFoFkdAjTfWeQMhHXV9lChoBmgJaA9DCMa+ZOPBRjNAlIaUUpRoFUtwaBZHQI05uaOPvKF1fZQoaAZoCWgPQwjXoC+9PYFxQJSGlFKUaBVNdQFoFkdAjUBqgZjx1HV9lChoBmgJaA9DCDElkuhlaEZAlIaUUpRoFUt4aBZHQI1CabKA8Sx1fZQoaAZoCWgPQwiWQErsGuZxQJSGlFKUaBVNOQFoFkdAjUfvnjhky3V9lChoBmgJaA9DCBRCB13CM3FAlIaUUpRoFU0DAWgWR0CNTGzru6VddX2UKGgGaAloD0MICK9d2nAOc0CUhpRSlGgVTTEBaBZHQI1RuGM4tHx1fZQoaAZoCWgPQwhAwcWK2sdxQJSGlFKUaBVNDQFoFkdAjVZbtAs053V9lChoBmgJaA9DCJ7vp8ZLFHNAlIaUUpRoFU0EAWgWR0CNWtgxagVXdX2UKGgGaAloD0MI8rBQa5qCcECUhpRSlGgVS9poFkdAjV6WluWKM3V9lChoBmgJaA9DCHBE96zrHm9AlIaUUpRoFUvBaBZHQI1hznxJ/Xp1fZQoaAZoCWgPQwiW0F0Sp8tyQJSGlFKUaBVNDwFoFkdAjWZ7vG6wuHV9lChoBmgJaA9DCO52vTRFqEJAlIaUUpRoFUtiaBZHQI1oFBppN9J1fZQoaAZoCWgPQwh/F7Zmq35yQJSGlFKUaBVNhgFoFkdAjW8axxDLKXV9lChoBmgJaA9DCMECmDJwwOG/lIaUUpRoFUtUaBZHQI1weaDwpfB1fZQoaAZoCWgPQwgP8nowKfJuQJSGlFKUaBVNGAFoFkdAjXVKsMiKSHV9lChoBmgJaA9DCO244XeTlXBAlIaUUpRoFU2JAmgWR0CNgSSOinHedX2UKGgGaAloD0MIwjV39D+XZECUhpRSlGgVTegDaBZHQI2UK+FlCkZ1fZQoaAZoCWgPQwhpAkUsYmFcQJSGlFKUaBVN6ANoFkdAjacETHsC1nV9lChoBmgJaA9DCKuwGeCCqkrAlIaUUpRoFUuoaBZHQI2p3zH0btJ1fZQoaAZoCWgPQwh/iXjr/ARzQJSGlFKUaBVL9WgWR0CNrhDBMzuXdX2UKGgGaAloD0MItr3dkpwpb0CUhpRSlGgVTT4BaBZHQI2z0guAZsN1fZQoaAZoCWgPQwjnOo20VA5HQJSGlFKUaBVLiGgWR0CNthqWTot+dX2UKGgGaAloD0MIWyOCcfDBZkCUhpRSlGgVTegDaBZHQI3Imvr4WUN1fZQoaAZoCWgPQwgQkZp28RxxQJSGlFKUaBVN5wJoFkdAjddQCr92o3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 399996, "buffer_size": 50000, "batch_size": 128, "learning_starts": 0, "tau": 1.0, "gamma": 0.99, "gradient_steps": -1, "optimize_memory_usage": false, "replay_buffer_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVNQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwMUmVwbGF5QnVmZmVylJOULg==", "__module__": "stable_baselines3.common.buffers", "__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device:\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ", "__init__": "<function ReplayBuffer.__init__ at 0x7ff4901f8200>", "add": "<function ReplayBuffer.add at 0x7ff4901f8050>", "sample": "<function ReplayBuffer.sample at 0x7ff4901efb90>", "_get_samples": "<function ReplayBuffer._get_samples at 0x7ff4901efc20>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7ff4902408d0>"}, "replay_buffer_kwargs": {}, "train_freq": {":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>", ":serialized:": "gAWVYQAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLBGgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMBHN0ZXCUhZRSlIaUgZQu"}, "actor": null, "use_sde_at_warmup": false, "exploration_initial_eps": 1.0, "exploration_final_eps": 0.1, "exploration_fraction": 0.02, "target_update_interval": 250, "_n_calls": 399999, "max_grad_norm": 10, "exploration_rate": 0.1, "exploration_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVbwMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsESxNDLGQBfAAYAIgBawRyEIgAUwCIAmQBfAAYAIgAiAIYABQAiAEbABcAUwBkAFMAlE5LAYaUKYwScHJvZ3Jlc3NfcmVtYWluaW5nlIWUjE4vaG9tZS9hbnRvbmluL0RvY3VtZW50cy9ybC9zdGFibGUtYmFzZWxpbmVzMy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEtuQwYAAQwBBAKUjANlbmSUjAxlbmRfZnJhY3Rpb26UjAVzdGFydJSHlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjE4vaG9tZS9hbnRvbmluL0RvY3VtZW50cy9ybC9zdGFibGUtYmFzZWxpbmVzMy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpRoHilSlGgeKVKUh5R0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCR9lH2UKGgZaA6MDF9fcXVhbG5hbWVfX5SMG2dldF9saW5lYXJfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lChoC4wIYnVpbHRpbnOUjAVmbG9hdJSTlIwGcmV0dXJulGgwdYwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBqMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP7mZmZmZmZqFlFKUaDhHP5R64UeuFHuFlFKUaDhHP/AAAAAAAACFlFKUh5SMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "system_info": {"OS": "Linux-5.13.0-40-generic-x86_64-with-debian-bullseye-sid #45~20.04.1-Ubuntu SMP Mon Apr 4 09:38:31 UTC 2022", "Python": "3.7.10", "Stable-Baselines3": "1.5.1a5", "PyTorch": "1.11.0", "GPU Enabled": "True", "Numpy": "1.21.2", "Gym": "0.21.0"}}
dqn-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d3a43f6e370205eedb3627e8f50bc8527f560fc6f81c160f89f8c3274a3a224b
3
+ size 1133604
dqn-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.5.1a5
dqn-LunarLander-v2/data ADDED
@@ -0,0 +1,120 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVMAAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLmRxbi5wb2xpY2llc5SMCURRTlBvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.dqn.policies",
6
+ "__doc__": "\n Policy class with Q-Value Net and target net for DQN\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function DQNPolicy.__init__ at 0x7ff48fd84b90>",
8
+ "_build": "<function DQNPolicy._build at 0x7ff48fd84c20>",
9
+ "make_q_net": "<function DQNPolicy.make_q_net at 0x7ff48fd84cb0>",
10
+ "forward": "<function DQNPolicy.forward at 0x7ff48fd84d40>",
11
+ "_predict": "<function DQNPolicy._predict at 0x7ff48fd84dd0>",
12
+ "_get_constructor_parameters": "<function DQNPolicy._get_constructor_parameters at 0x7ff48fd84e60>",
13
+ "set_training_mode": "<function DQNPolicy.set_training_mode at 0x7ff48fd84ef0>",
14
+ "__abstractmethods__": "frozenset()",
15
+ "_abc_impl": "<_abc_data object at 0x7ff48fd6ea50>"
16
+ },
17
+ "verbose": 1,
18
+ "policy_kwargs": {
19
+ "net_arch": [
20
+ 256,
21
+ 256
22
+ ]
23
+ },
24
+ "observation_space": {
25
+ ":type:": "<class 'gym.spaces.box.Box'>",
26
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
27
+ "dtype": "float32",
28
+ "_shape": [
29
+ 8
30
+ ],
31
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
32
+ "high": "[inf inf inf inf inf inf inf inf]",
33
+ "bounded_below": "[False False False False False False False False]",
34
+ "bounded_above": "[False False False False False False False False]",
35
+ "_np_random": null
36
+ },
37
+ "action_space": {
38
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
39
+ ":serialized:": "gAWVLgsAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwSX19yYW5kb21zdGF0ZV9jdG9ylJOUjAdNVDE5OTM3lIWUUpR9lCiMDWJpdF9nZW5lcmF0b3KUaBOMBXN0YXRllH2UKIwDa2V5lIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolsAJAAAAAAAAi+0H7kPAgdBuF030bXyF7n2u5dW6SEXCM6tqhq5MMNXq+cbpYKU+zAzhfMglymx9sMzDGYTfQRH4kTtg/+PN+E7XQ0i+0/yR1PtBH9/3gPBWXKxyu2AO2p/qkjxmLGWCZn0+UiHyaWNFHtBiQEMwiw2h6lpKvsKhHsuTR7djb2nBoI9EED7FcI/Py4KJ0iVYC8sIO5cWOx1VGU9DIoJg9G0f6njGxrQHddg3EiOpmds/fQhkuA/kWAV7Va/RqY6vV5SoT9jGIrGTSFCeb7+WZvi7bZcNThjmSkQstVQl/dPZI7Ll5uJeZG5B+wVrCaTDUUWD9Cew/l8Tclds8cKF02COYnS9amO651a18QxFuLfWa+xUS5gtI13kUx1cFz6jes4rJsKvad24n7XVjXU8kOOiCrYsZKSounjnkBpP29ErNdk1kDclaSZ/NZefVVVZCB3LURHzKqp0/mPWP45BBqmpqY+LMVvPfRij7KRor9630PK3rE+ZV03ezCoeVY5tzaYqn4d0EwaxEyXo9YSHq4R7F8NMWMvZ49dL1Eha10yI8Iw7YeTAfPHth26TM2i7GzMBna2KP8p+PuIYi60Rvn4p5iqBdZ0ULEvnxwBo2M6KK6KSmEI4DviMhemrjdL4Gwlwi2EPjBJ7JojJKepsNijm3DOqaGrDj2T9AAIjPcYAC6CWc237RhfxnR0A2zXlgLgm3Q86s3nBMI6Qp7jfrwLc0iUeqVQYAxIzL9S7Nqo64o6s+CM6sj49MfRSTMyIy7YaMd9uAPg3chlEYSQu6Hq/IN3t2/7wAMbWD91cSwIfANN3aClYZXcmq9laWrrdG13K1vbwyR3JhIRDgrQpcM6DtLxzjNfXgWiTBXMMpXhm7D7VyFEp7fS0Q0SMoeOOUcaUv2552el+Cw2VlGHWzFHqbSERirbnjEsanughZkWdGTTonv1D5JKMeiVEgP3jATz8pSd8Hz15Mrwit3PvJZe8jxIfVziMOT02+1yoccP3V5lyu+B60DKF89P0rQ1QgqYwbJ4rLAZTjiJQzsji6nCAFPmEYjS+Z9RqMrH73T01LM8HlsNNWh8sFBW1ynzwQVavYR5ZbvFKTTBSMYuLBc+HQ+tSiG6mp4P6YoIQrxJtiBlB2CNP0VBnv3mTl3KlnZyiJCkUd2zwnPPXzplSpqneFZAPw0d2ORoIf3GzfOWgrGAaFOJFoJ+8mo3wS+hON980FI+07me6Ltb2okjb+aVEdiCa9Pz2Dyph0Sh6mMYhw035NBSry2bniV26UBwQG7nY/V4/00wb+BOHaCVo+yZs/6GoegBTGg+lGdXtNaL/2eukMrUKatC3vxywAULK/H5OG9B/3UVf38mPn+UxvR5S00pms/5JPRdmxKbaS5K29pI4t5iFRUUt15YGyVRmnlbnpEi3k4g4/4CiPCztQM+iYxCgmNMg09INWFruoe2T5KUamUHVl87uolOSX2gVRw7W482NjYUi0RIf/HaJjW+hlV1jpOFkgtWK5w/n3LekLH3WuAYJmcTWKBx62n7Ohw3tW6pAs6RFoFF0yqgwO2qICg9ZnVMuVRxELcQS1QoKjJeTc8uSD1sHmTFUowjszbtgh3HYgHJPeuSkK76v6lkIgW4qVd/0ZIVH5u0PgbFLt3/yjYp/Kj+N2+C0BI4stxrKLuWTSIwTvOAIWK0vLNjR6J5hHNbYjQviMnvvXAV93sWtzUk7Ic2hwekP49NfshHfNlyjMvf7bNo6ubF66X75u4wIrEoqp3NexJjwGBOeNd82ZgZ0cudhIj0KLAhp1zE/HwbfEzex1an5h+qv98TXWlotPxM8VFAKjsoAEBpLkd1lWNTNi7xfZjIk8GwDEiIchoJSDlJ5H7FYgFYfwaEiZnXj/TyqEAZmPHzMGvSr/mGTEPMz5DhR09/PNbxa48W05hXprxSp8UNdgH2AKLYVYYkVxCp32+cw2S0Xel2+zkqJxvswuqMjIG5QF7/S6P1hh+oUjng+vaPQI+TigR9jsIjSnmYgrvbDLxYOU464rUydraaJyLsiY7dHNlGBM2TPq2p6m5V/u5VEgvh5Tsbe4PiTKuEO6dt02HNjeesCs0zg8zSEqlLyJY63L70Rhv5p/D5KPr30cl7CZMpQwx+YCBwIxHqPh0iYQmXF6IqtRIXzfR/nIiFXD+ab+eJMWcPS2sszudDz/gWk1lAiaiEHhx7gysqWgus5miGMO5NpkNJcGcJKf1CcbYuRkUxgGMFWenhvk/Z4Qq8jxW09o2vfmwgj9UHVS9qklPSKQMHKxjNoHewUoZOfLA4JRidZCjLmNOb1QxJ+Wz6Ylvv3tHiEOmJidZ8Mv6+vFmBKjQn5mFOXKO+SSWDFJRG+DESY49mdHeK+mPcXc4BlijFN8pqgBmEkQNDANMJdpgn8l3czwSNQ3X3pQQsAuxPJVWll+3/xdxqW+nvu3X9K5cshtK8vcc9Hf9vgckA+VFtfGImemSTN4PrE3pnsiAzZWkSr6dMj7ZiaCWMZsHA2+pT7pVsthkamlnXMrUxOGJI+/e23i1ffBBHBDyLhPfYsSwDFRcrRBjeLitbyAzt5LNmQP5ZmEg9W63psrWE6b6cgTbHnQdjS29ANVCfoemnE1huWCRUTaprVY3dRLBZ6QMN6f99AK1GUtxZmCjpQtPbKhzqR3rm+qz7Mc+t9ufhpp5JktB7CPrj3RqHoXsEV7nv90hmBlItmKHKC76YOCtD4kWXe9RB44HEGkKNfpANu3P9QXCvR4WLdHzeLM2QYkIX57qnH+3wbPjSJZ3yU5nIR4VtNbqB7ut5EsObBkhSRPt5Fc7n+m5vqEUiQN5fv6XQ5e99rmKMpRlKhb8zBsEOIU5NQJeYCjDfFRSqVPcHu6YuV2HLZwmJmgoR4HA/lCD9YCia2qGdov8Z+ehtjeHgmSq7scxhYQUTQdFwdqJBaQtYy+RlnEgdoAYaPWQiylfPHUolc654nhWPUhYykmO6VXX18uRPoVob43P79piLjIaXSD6wGF2rSOT0z8gmCprxrZjz1UC2PQHQhNblE89oYdyCR5vDZrkJirmINMInquEMniyhOnA+VEiON/MUrekVhiAYZ+vtI1koLTNdcLJVdBUDFcUnlNcXCITQ5eEdLjlk3BtJudqBNto8CA1OsL+YwD6c0bwrKIwXRXgwG3tVntoqpdmglnp8KptkY8mozou6d0cCTm7gjW/HOmF5pUcG/WL3IQpGfKh7ZB2Hni7VhGjZf5OKJhigkf1+mN0gbgQFYN/c2RH4A0OtRyEhXK3NMIEFjQ9mOeRGBvqNyUUsrP0Pg12uLMIFI//jQo8acuGJSlGgJjAJ1NJSJiIeUUpQoSwNoDU5OTkr/////Sv////9LAHSUYk1wAoWUjAFDlHSUUpSMA3Bvc5RLfHWMCWhhc19nYXVzc5RLAIwFZ2F1c3OURwAAAAAAAAAAdWJ1Yi4=",
40
+ "n": 4,
41
+ "_shape": [],
42
+ "dtype": "int64",
43
+ "_np_random": "RandomState(MT19937)"
44
+ },
45
+ "n_envs": 1,
46
+ "num_timesteps": 400000,
47
+ "_total_timesteps": 1000000,
48
+ "_num_timesteps_at_start": 0,
49
+ "seed": null,
50
+ "action_noise": null,
51
+ "start_time": 1651785049.8402338,
52
+ "learning_rate": 0.001,
53
+ "tensorboard_log": null,
54
+ "lr_schedule": {
55
+ ":type:": "<class 'function'>",
56
+ ":serialized:": "gAWVywIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxOL2hvbWUvYW50b25pbi9Eb2N1bWVudHMvcmwvc3RhYmxlLWJhc2VsaW5lczMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxOL2hvbWUvYW50b25pbi9Eb2N1bWVudHMvcmwvc3RhYmxlLWJhc2VsaW5lczMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9QYk3S8an8hZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
57
+ },
58
+ "_last_obs": {
59
+ ":type:": "<class 'numpy.ndarray'>",
60
+ ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAKZuAb6Fv9Q6NuUXM1nNGjL4kZO8qQUeswAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="
61
+ },
62
+ "_last_episode_starts": {
63
+ ":type:": "<class 'numpy.ndarray'>",
64
+ ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAAGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="
65
+ },
66
+ "_last_original_obs": {
67
+ ":type:": "<class 'numpy.ndarray'>",
68
+ ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAKZuAb6Fv9Q6plL9suXwMzL3kZO83jYFNAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="
69
+ },
70
+ "_episode_num": 1120,
71
+ "use_sde": false,
72
+ "sde_sample_freq": -1,
73
+ "_current_progress_remaining": 0.600001,
74
+ "ep_info_buffer": {
75
+ ":type:": "<class 'collections.deque'>",
76
+ ":serialized:": "gAWVWBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI7ZqQ1phvY0CUhpRSlIwBbJRNuQOMAXSUR0CLJl0yxiXqdX2UKGgGaAloD0MI3PC76VYCckCUhpRSlGgVTQgBaBZHQIsrA593KSx1fZQoaAZoCWgPQwgbKzHPSjNuwJSGlFKUaBVNTAFoFkdAizEdm6GxlnV9lChoBmgJaA9DCHO7l/tkH29AlIaUUpRoFUvxaBZHQIs1QQ6IWP91fZQoaAZoCWgPQwjWGd8XlxxCQJSGlFKUaBVLa2gWR0CLNw0F8ohIdX2UKGgGaAloD0MIEaj+QSQxSkCUhpRSlGgVS5JoFkdAizl3CsOoYXV9lChoBmgJaA9DCA/tYwW/LnBAlIaUUpRoFUv9aBZHQIs9v+OwPiF1fZQoaAZoCWgPQwiqtpvgmzRHQJSGlFKUaBVLX2gWR0CLP1lXiiqRdX2UKGgGaAloD0MIqyFxjyVDY8CUhpRSlGgVTbMDaBZHQItS57qptJp1fZQoaAZoCWgPQwgKZHYWvZMvQJSGlFKUaBVLZ2gWR0CLVJzZpSJkdX2UKGgGaAloD0MIfxKfO8FcbkCUhpRSlGgVTQ8CaBZHQIteKCOFQEZ1fZQoaAZoCWgPQwjYfcfw2Gs4wJSGlFKUaBVLZ2gWR0CLX9slb/wRdX2UKGgGaAloD0MIYaWCiqr5QUCUhpRSlGgVS/1oFkdAi2Q6r/82rHV9lChoBmgJaA9DCBiXqrTFTlvAlIaUUpRoFU0TAWgWR0CLaPoUSIxhdX2UKGgGaAloD0MI0ova/SopUcCUhpRSlGgVTegDaBZHQIt8ZwwTM7l1fZQoaAZoCWgPQwj0bcFS3X1swJSGlFKUaBVNxgNoFkdAi5FBWPtD2XV9lChoBmgJaA9DCDihEAGHEmLAlIaUUpRoFU3oA2gWR0CLpNUo8ZDRdX2UKGgGaAloD0MIJCao4dsQYcCUhpRSlGgVTegDaBZHQIu6105lvqF1fZQoaAZoCWgPQwh2+kFd5BpyQJSGlFKUaBVNAwFoFkdAi79iyQgcLnV9lChoBmgJaA9DCIO/X8yWYW9AlIaUUpRoFU1+AWgWR0CLxi0w8GLUdX2UKGgGaAloD0MINIC3QMKjckCUhpRSlGgVTRoBaBZHQIvLBLK3d9F1fZQoaAZoCWgPQwiN74tLVbBgwJSGlFKUaBVNZAFoFkdAi9FrOzIFNnV9lChoBmgJaA9DCFoQyvs4kklAlIaUUpRoFUuRaBZHQIvT1elbeM11fZQoaAZoCWgPQwi1xMpoJIdwQJSGlFKUaBVL62gWR0CL19RAKOT8dX2UKGgGaAloD0MIY1+y8WCJbUCUhpRSlGgVTR4DaBZHQIvo3dhy8z11fZQoaAZoCWgPQwjXE10X/mdxQJSGlFKUaBVNqwFoFkdAi/EFtTDO1XV9lChoBmgJaA9DCKLw2To4hmNAlIaUUpRoFU3oA2gWR0CMBJfqHGjsdX2UKGgGaAloD0MIZjBGJIpwb0CUhpRSlGgVTSkBaBZHQIwJ54dIXj51fZQoaAZoCWgPQwjG4cyv5p1wQJSGlFKUaBVNWgJoFkdAjBWidjG1hXV9lChoBmgJaA9DCPxQacTM23JAlIaUUpRoFUvUaBZHQIwZOhXbM5h1fZQoaAZoCWgPQwi/nUSE/2VwQJSGlFKUaBVN5wFoFkdAjCIuIInjQ3V9lChoBmgJaA9DCOi/B6/d1m9AlIaUUpRoFU1wAmgWR0CMLacslLOBdX2UKGgGaAloD0MIrRiuDoBWcUCUhpRSlGgVTTMBaBZHQIwzP9vS+g11fZQoaAZoCWgPQwic+GpHcTlVwJSGlFKUaBVN6ANoFkdAjEcSrHU+cHV9lChoBmgJaA9DCGbBxB+F0nFAlIaUUpRoFU0rAWgWR0CMTG+bmU4adX2UKGgGaAloD0MIjlph+t5qb0CUhpRSlGgVTUoCaBZHQIxXVK/VRUF1fZQoaAZoCWgPQwj7lGOyOPRwQJSGlFKUaBVLuWgWR0CMWncnE2pAdX2UKGgGaAloD0MIiSR6GQUncECUhpRSlGgVTS4BaBZHQIxfv09QoCx1fZQoaAZoCWgPQwg57//jBGJwQJSGlFKUaBVNNgFoFkdAjGUt4iX6ZnV9lChoBmgJaA9DCKq2m+CbQkFAlIaUUpRoFUt1aBZHQIxnKXQdCE91fZQoaAZoCWgPQwiIuaRqu5ZpwJSGlFKUaBVNsgNoFkdAjHwx9G7SRnV9lChoBmgJaA9DCAlupGzRMnJAlIaUUpRoFU1jAmgWR0CMh+YrrgO0dX2UKGgGaAloD0MI8xyR71KzUUCUhpRSlGgVS6xoFkdAjIrNRm9QGnV9lChoBmgJaA9DCPKVQEqsRHFAlIaUUpRoFU2RAWgWR0CMkffBvaUSdX2UKGgGaAloD0MIV5V9VwS/PUCUhpRSlGgVS2NoFkdAjJOlrl/6PHV9lChoBmgJaA9DCA7d7A8UDHJAlIaUUpRoFU1dAWgWR0CMmdsj3VTadX2UKGgGaAloD0MIwR2oUx6tJ0CUhpRSlGgVS2poFkdAjJum+9Jz1nV9lChoBmgJaA9DCD5BYrt731XAlIaUUpRoFU3oA2gWR0CMru+pOvdNdX2UKGgGaAloD0MIuFZ72At9a0CUhpRSlGgVTaIBaBZHQIy2e5Dqnm91fZQoaAZoCWgPQwh1BduIZxZwQJSGlFKUaBVNNwFoFkdAjLvnfl6qsHV9lChoBmgJaA9DCFm/mZgu1kRAlIaUUpRoFUuUaBZHQIy+bQb+98J1fZQoaAZoCWgPQwhH5LuUumduQJSGlFKUaBVNZQFoFkdAjMTYbKifx3V9lChoBmgJaA9DCHanO08800fAlIaUUpRoFUttaBZHQIzGrEcbR4R1fZQoaAZoCWgPQwiZDTLJyDkmwJSGlFKUaBVLa2gWR0CMyHb/wRXfdX2UKGgGaAloD0MIRtJu9LHqbkCUhpRSlGgVS+doFkdAjMxeMQ2/BXV9lChoBmgJaA9DCA3BcRm3o21AlIaUUpRoFUvjaBZHQIzQQR5C4SZ1fZQoaAZoCWgPQwjulA7Wf55xQJSGlFKUaBVNvANoFkdAjOJxkNFz+3V9lChoBmgJaA9DCKKzzCIUBG5AlIaUUpRoFUvTaBZHQIzl+5SWJJp1fZQoaAZoCWgPQwjTMecZ+zVxQJSGlFKUaBVNUQFoFkdAjOvlzU7SzHV9lChoBmgJaA9DCLkXmBWKLEDAlIaUUpRoFUtyaBZHQIztwEyLyc11fZQoaAZoCWgPQwjHnGfsS246QJSGlFKUaBVLkGgWR0CM8CWbgCOndX2UKGgGaAloD0MIkE3yI346b0CUhpRSlGgVTRkCaBZHQIz6PPVurIZ1fZQoaAZoCWgPQwgIOlrV0htwQJSGlFKUaBVLqWgWR0CM/Rf8/D+BdX2UKGgGaAloD0MIGmt/Z3sUEMCUhpRSlGgVS1BoFkdAjP5o2OyVwHV9lChoBmgJaA9DCF7yP/k7H3FAlIaUUpRoFUvaaBZHQI0CFfb9If91fZQoaAZoCWgPQwjhC5OpgnNJQJSGlFKUaBVLiWgWR0CNBFIOH310dX2UKGgGaAloD0MI2SH+YUtZS0CUhpRSlGgVS5BoFkdAjQbAfMfRu3V9lChoBmgJaA9DCAcoDTWK3W1AlIaUUpRoFUvLaBZHQI0KLlPrOZ91fZQoaAZoCWgPQwg5QgbybDtvQJSGlFKUaBVL+2gWR0CNDnsImgJ1dX2UKGgGaAloD0MIaHdIMUD0b0CUhpRSlGgVS7VoFkdAjRF8xKxs23V9lChoBmgJaA9DCJoGRfMAY3NAlIaUUpRoFU1dAWgWR0CNF7fBN21VdX2UKGgGaAloD0MIzQNY5Nfgb0CUhpRSlGgVTRUBaBZHQI0chhF3IMl1fZQoaAZoCWgPQwhvfsNEQyZxQJSGlFKUaBVNBwFoFkdAjSEEJKJ2uHV9lChoBmgJaA9DCLQ4Y5hT/3JAlIaUUpRoFU3zAWgWR0CNKbGax5cDdX2UKGgGaAloD0MIz4QmieWMcUCUhpRSlGgVTXkBaBZHQI0wfRLK3d91fZQoaAZoCWgPQwjhmdAkMSZzQJSGlFKUaBVNoAFoFkdAjTfWeQMhHXV9lChoBmgJaA9DCMa+ZOPBRjNAlIaUUpRoFUtwaBZHQI05uaOPvKF1fZQoaAZoCWgPQwjXoC+9PYFxQJSGlFKUaBVNdQFoFkdAjUBqgZjx1HV9lChoBmgJaA9DCDElkuhlaEZAlIaUUpRoFUt4aBZHQI1CabKA8Sx1fZQoaAZoCWgPQwiWQErsGuZxQJSGlFKUaBVNOQFoFkdAjUfvnjhky3V9lChoBmgJaA9DCBRCB13CM3FAlIaUUpRoFU0DAWgWR0CNTGzru6VddX2UKGgGaAloD0MICK9d2nAOc0CUhpRSlGgVTTEBaBZHQI1RuGM4tHx1fZQoaAZoCWgPQwhAwcWK2sdxQJSGlFKUaBVNDQFoFkdAjVZbtAs053V9lChoBmgJaA9DCJ7vp8ZLFHNAlIaUUpRoFU0EAWgWR0CNWtgxagVXdX2UKGgGaAloD0MI8rBQa5qCcECUhpRSlGgVS9poFkdAjV6WluWKM3V9lChoBmgJaA9DCHBE96zrHm9AlIaUUpRoFUvBaBZHQI1hznxJ/Xp1fZQoaAZoCWgPQwiW0F0Sp8tyQJSGlFKUaBVNDwFoFkdAjWZ7vG6wuHV9lChoBmgJaA9DCO52vTRFqEJAlIaUUpRoFUtiaBZHQI1oFBppN9J1fZQoaAZoCWgPQwh/F7Zmq35yQJSGlFKUaBVNhgFoFkdAjW8axxDLKXV9lChoBmgJaA9DCMECmDJwwOG/lIaUUpRoFUtUaBZHQI1weaDwpfB1fZQoaAZoCWgPQwgP8nowKfJuQJSGlFKUaBVNGAFoFkdAjXVKsMiKSHV9lChoBmgJaA9DCO244XeTlXBAlIaUUpRoFU2JAmgWR0CNgSSOinHedX2UKGgGaAloD0MIwjV39D+XZECUhpRSlGgVTegDaBZHQI2UK+FlCkZ1fZQoaAZoCWgPQwhpAkUsYmFcQJSGlFKUaBVN6ANoFkdAjacETHsC1nV9lChoBmgJaA9DCKuwGeCCqkrAlIaUUpRoFUuoaBZHQI2p3zH0btJ1fZQoaAZoCWgPQwh/iXjr/ARzQJSGlFKUaBVL9WgWR0CNrhDBMzuXdX2UKGgGaAloD0MItr3dkpwpb0CUhpRSlGgVTT4BaBZHQI2z0guAZsN1fZQoaAZoCWgPQwjnOo20VA5HQJSGlFKUaBVLiGgWR0CNthqWTot+dX2UKGgGaAloD0MIWyOCcfDBZkCUhpRSlGgVTegDaBZHQI3Imvr4WUN1fZQoaAZoCWgPQwgQkZp28RxxQJSGlFKUaBVN5wJoFkdAjddQCr92o3VlLg=="
77
+ },
78
+ "ep_success_buffer": {
79
+ ":type:": "<class 'collections.deque'>",
80
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
81
+ },
82
+ "_n_updates": 399996,
83
+ "buffer_size": 50000,
84
+ "batch_size": 128,
85
+ "learning_starts": 0,
86
+ "tau": 1.0,
87
+ "gamma": 0.99,
88
+ "gradient_steps": -1,
89
+ "optimize_memory_usage": false,
90
+ "replay_buffer_class": {
91
+ ":type:": "<class 'abc.ABCMeta'>",
92
+ ":serialized:": "gAWVNQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwMUmVwbGF5QnVmZmVylJOULg==",
93
+ "__module__": "stable_baselines3.common.buffers",
94
+ "__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device:\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ",
95
+ "__init__": "<function ReplayBuffer.__init__ at 0x7ff4901f8200>",
96
+ "add": "<function ReplayBuffer.add at 0x7ff4901f8050>",
97
+ "sample": "<function ReplayBuffer.sample at 0x7ff4901efb90>",
98
+ "_get_samples": "<function ReplayBuffer._get_samples at 0x7ff4901efc20>",
99
+ "__abstractmethods__": "frozenset()",
100
+ "_abc_impl": "<_abc_data object at 0x7ff4902408d0>"
101
+ },
102
+ "replay_buffer_kwargs": {},
103
+ "train_freq": {
104
+ ":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>",
105
+ ":serialized:": "gAWVYQAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLBGgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMBHN0ZXCUhZRSlIaUgZQu"
106
+ },
107
+ "actor": null,
108
+ "use_sde_at_warmup": false,
109
+ "exploration_initial_eps": 1.0,
110
+ "exploration_final_eps": 0.1,
111
+ "exploration_fraction": 0.02,
112
+ "target_update_interval": 250,
113
+ "_n_calls": 399999,
114
+ "max_grad_norm": 10,
115
+ "exploration_rate": 0.1,
116
+ "exploration_schedule": {
117
+ ":type:": "<class 'function'>",
118
+ ":serialized:": "gAWVbwMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsESxNDLGQBfAAYAIgBawRyEIgAUwCIAmQBfAAYAIgAiAIYABQAiAEbABcAUwBkAFMAlE5LAYaUKYwScHJvZ3Jlc3NfcmVtYWluaW5nlIWUjE4vaG9tZS9hbnRvbmluL0RvY3VtZW50cy9ybC9zdGFibGUtYmFzZWxpbmVzMy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEtuQwYAAQwBBAKUjANlbmSUjAxlbmRfZnJhY3Rpb26UjAVzdGFydJSHlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjE4vaG9tZS9hbnRvbmluL0RvY3VtZW50cy9ybC9zdGFibGUtYmFzZWxpbmVzMy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpRoHilSlGgeKVKUh5R0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCR9lH2UKGgZaA6MDF9fcXVhbG5hbWVfX5SMG2dldF9saW5lYXJfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lChoC4wIYnVpbHRpbnOUjAVmbG9hdJSTlIwGcmV0dXJulGgwdYwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBqMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP7mZmZmZmZqFlFKUaDhHP5R64UeuFHuFlFKUaDhHP/AAAAAAAACFlFKUh5SMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
119
+ }
120
+ }
dqn-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8ff67d42b058a103f6fc9d73acb72cd63019f7594e9127b94ec8126dd5627102
3
+ size 556353
dqn-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5bb5bc1d1d39548cc17225cc21911ef3e5c885dd731bcc617e38dd22166f74e8
3
+ size 557057
dqn-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
dqn-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.13.0-40-generic-x86_64-with-debian-bullseye-sid #45~20.04.1-Ubuntu SMP Mon Apr 4 09:38:31 UTC 2022
2
+ Python: 3.7.10
3
+ Stable-Baselines3: 1.5.1a5
4
+ PyTorch: 1.11.0
5
+ GPU Enabled: True
6
+ Numpy: 1.21.2
7
+ Gym: 0.21.0
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:be81f2d96a7971924dae0a7226f841eb8ad3ecd130a027ceb2a6bf479cc93f1b
3
+ size 198835
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 256.4044445, "std_reward": 20.749781801216276, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-05T23:30:27.319583"}