First commit
Browse files- .gitattributes +1 -0
- README.md +28 -0
- config.json +1 -0
- dqn-LunarLander-v2.zip +3 -0
- dqn-LunarLander-v2/_stable_baselines3_version +1 -0
- dqn-LunarLander-v2/data +120 -0
- dqn-LunarLander-v2/policy.optimizer.pth +3 -0
- dqn-LunarLander-v2/policy.pth +3 -0
- dqn-LunarLander-v2/pytorch_variables.pth +3 -0
- dqn-LunarLander-v2/system_info.txt +7 -0
- replay.mp4 +3 -0
- results.json +1 -0
.gitattributes
CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: DQN
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: 256.40 +/- 20.75
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: LunarLander-v2
|
20 |
+
type: LunarLander-v2
|
21 |
+
---
|
22 |
+
|
23 |
+
# **DQN** Agent playing **LunarLander-v2**
|
24 |
+
This is a trained model of a **DQN** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
25 |
+
|
26 |
+
## Usage (with Stable-baselines3)
|
27 |
+
TODO: Add your code
|
28 |
+
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVMAAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLmRxbi5wb2xpY2llc5SMCURRTlBvbGljeZSTlC4=", "__module__": "stable_baselines3.dqn.policies", "__doc__": "\n Policy class with Q-Value Net and target net for DQN\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function DQNPolicy.__init__ at 0x7ff48fd84b90>", "_build": "<function DQNPolicy._build at 0x7ff48fd84c20>", "make_q_net": "<function DQNPolicy.make_q_net at 0x7ff48fd84cb0>", "forward": "<function DQNPolicy.forward at 0x7ff48fd84d40>", "_predict": "<function DQNPolicy._predict at 0x7ff48fd84dd0>", "_get_constructor_parameters": "<function DQNPolicy._get_constructor_parameters at 0x7ff48fd84e60>", "set_training_mode": "<function DQNPolicy.set_training_mode at 0x7ff48fd84ef0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7ff48fd6ea50>"}, "verbose": 1, "policy_kwargs": {"net_arch": [256, 256]}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVLgsAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwSX19yYW5kb21zdGF0ZV9jdG9ylJOUjAdNVDE5OTM3lIWUUpR9lCiMDWJpdF9nZW5lcmF0b3KUaBOMBXN0YXRllH2UKIwDa2V5lIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolsAJAAAAAAAAi+0H7kPAgdBuF030bXyF7n2u5dW6SEXCM6tqhq5MMNXq+cbpYKU+zAzhfMglymx9sMzDGYTfQRH4kTtg/+PN+E7XQ0i+0/yR1PtBH9/3gPBWXKxyu2AO2p/qkjxmLGWCZn0+UiHyaWNFHtBiQEMwiw2h6lpKvsKhHsuTR7djb2nBoI9EED7FcI/Py4KJ0iVYC8sIO5cWOx1VGU9DIoJg9G0f6njGxrQHddg3EiOpmds/fQhkuA/kWAV7Va/RqY6vV5SoT9jGIrGTSFCeb7+WZvi7bZcNThjmSkQstVQl/dPZI7Ll5uJeZG5B+wVrCaTDUUWD9Cew/l8Tclds8cKF02COYnS9amO651a18QxFuLfWa+xUS5gtI13kUx1cFz6jes4rJsKvad24n7XVjXU8kOOiCrYsZKSounjnkBpP29ErNdk1kDclaSZ/NZefVVVZCB3LURHzKqp0/mPWP45BBqmpqY+LMVvPfRij7KRor9630PK3rE+ZV03ezCoeVY5tzaYqn4d0EwaxEyXo9YSHq4R7F8NMWMvZ49dL1Eha10yI8Iw7YeTAfPHth26TM2i7GzMBna2KP8p+PuIYi60Rvn4p5iqBdZ0ULEvnxwBo2M6KK6KSmEI4DviMhemrjdL4Gwlwi2EPjBJ7JojJKepsNijm3DOqaGrDj2T9AAIjPcYAC6CWc237RhfxnR0A2zXlgLgm3Q86s3nBMI6Qp7jfrwLc0iUeqVQYAxIzL9S7Nqo64o6s+CM6sj49MfRSTMyIy7YaMd9uAPg3chlEYSQu6Hq/IN3t2/7wAMbWD91cSwIfANN3aClYZXcmq9laWrrdG13K1vbwyR3JhIRDgrQpcM6DtLxzjNfXgWiTBXMMpXhm7D7VyFEp7fS0Q0SMoeOOUcaUv2552el+Cw2VlGHWzFHqbSERirbnjEsanughZkWdGTTonv1D5JKMeiVEgP3jATz8pSd8Hz15Mrwit3PvJZe8jxIfVziMOT02+1yoccP3V5lyu+B60DKF89P0rQ1QgqYwbJ4rLAZTjiJQzsji6nCAFPmEYjS+Z9RqMrH73T01LM8HlsNNWh8sFBW1ynzwQVavYR5ZbvFKTTBSMYuLBc+HQ+tSiG6mp4P6YoIQrxJtiBlB2CNP0VBnv3mTl3KlnZyiJCkUd2zwnPPXzplSpqneFZAPw0d2ORoIf3GzfOWgrGAaFOJFoJ+8mo3wS+hON980FI+07me6Ltb2okjb+aVEdiCa9Pz2Dyph0Sh6mMYhw035NBSry2bniV26UBwQG7nY/V4/00wb+BOHaCVo+yZs/6GoegBTGg+lGdXtNaL/2eukMrUKatC3vxywAULK/H5OG9B/3UVf38mPn+UxvR5S00pms/5JPRdmxKbaS5K29pI4t5iFRUUt15YGyVRmnlbnpEi3k4g4/4CiPCztQM+iYxCgmNMg09INWFruoe2T5KUamUHVl87uolOSX2gVRw7W482NjYUi0RIf/HaJjW+hlV1jpOFkgtWK5w/n3LekLH3WuAYJmcTWKBx62n7Ohw3tW6pAs6RFoFF0yqgwO2qICg9ZnVMuVRxELcQS1QoKjJeTc8uSD1sHmTFUowjszbtgh3HYgHJPeuSkK76v6lkIgW4qVd/0ZIVH5u0PgbFLt3/yjYp/Kj+N2+C0BI4stxrKLuWTSIwTvOAIWK0vLNjR6J5hHNbYjQviMnvvXAV93sWtzUk7Ic2hwekP49NfshHfNlyjMvf7bNo6ubF66X75u4wIrEoqp3NexJjwGBOeNd82ZgZ0cudhIj0KLAhp1zE/HwbfEzex1an5h+qv98TXWlotPxM8VFAKjsoAEBpLkd1lWNTNi7xfZjIk8GwDEiIchoJSDlJ5H7FYgFYfwaEiZnXj/TyqEAZmPHzMGvSr/mGTEPMz5DhR09/PNbxa48W05hXprxSp8UNdgH2AKLYVYYkVxCp32+cw2S0Xel2+zkqJxvswuqMjIG5QF7/S6P1hh+oUjng+vaPQI+TigR9jsIjSnmYgrvbDLxYOU464rUydraaJyLsiY7dHNlGBM2TPq2p6m5V/u5VEgvh5Tsbe4PiTKuEO6dt02HNjeesCs0zg8zSEqlLyJY63L70Rhv5p/D5KPr30cl7CZMpQwx+YCBwIxHqPh0iYQmXF6IqtRIXzfR/nIiFXD+ab+eJMWcPS2sszudDz/gWk1lAiaiEHhx7gysqWgus5miGMO5NpkNJcGcJKf1CcbYuRkUxgGMFWenhvk/Z4Qq8jxW09o2vfmwgj9UHVS9qklPSKQMHKxjNoHewUoZOfLA4JRidZCjLmNOb1QxJ+Wz6Ylvv3tHiEOmJidZ8Mv6+vFmBKjQn5mFOXKO+SSWDFJRG+DESY49mdHeK+mPcXc4BlijFN8pqgBmEkQNDANMJdpgn8l3czwSNQ3X3pQQsAuxPJVWll+3/xdxqW+nvu3X9K5cshtK8vcc9Hf9vgckA+VFtfGImemSTN4PrE3pnsiAzZWkSr6dMj7ZiaCWMZsHA2+pT7pVsthkamlnXMrUxOGJI+/e23i1ffBBHBDyLhPfYsSwDFRcrRBjeLitbyAzt5LNmQP5ZmEg9W63psrWE6b6cgTbHnQdjS29ANVCfoemnE1huWCRUTaprVY3dRLBZ6QMN6f99AK1GUtxZmCjpQtPbKhzqR3rm+qz7Mc+t9ufhpp5JktB7CPrj3RqHoXsEV7nv90hmBlItmKHKC76YOCtD4kWXe9RB44HEGkKNfpANu3P9QXCvR4WLdHzeLM2QYkIX57qnH+3wbPjSJZ3yU5nIR4VtNbqB7ut5EsObBkhSRPt5Fc7n+m5vqEUiQN5fv6XQ5e99rmKMpRlKhb8zBsEOIU5NQJeYCjDfFRSqVPcHu6YuV2HLZwmJmgoR4HA/lCD9YCia2qGdov8Z+ehtjeHgmSq7scxhYQUTQdFwdqJBaQtYy+RlnEgdoAYaPWQiylfPHUolc654nhWPUhYykmO6VXX18uRPoVob43P79piLjIaXSD6wGF2rSOT0z8gmCprxrZjz1UC2PQHQhNblE89oYdyCR5vDZrkJirmINMInquEMniyhOnA+VEiON/MUrekVhiAYZ+vtI1koLTNdcLJVdBUDFcUnlNcXCITQ5eEdLjlk3BtJudqBNto8CA1OsL+YwD6c0bwrKIwXRXgwG3tVntoqpdmglnp8KptkY8mozou6d0cCTm7gjW/HOmF5pUcG/WL3IQpGfKh7ZB2Hni7VhGjZf5OKJhigkf1+mN0gbgQFYN/c2RH4A0OtRyEhXK3NMIEFjQ9mOeRGBvqNyUUsrP0Pg12uLMIFI//jQo8acuGJSlGgJjAJ1NJSJiIeUUpQoSwNoDU5OTkr/////Sv////9LAHSUYk1wAoWUjAFDlHSUUpSMA3Bvc5RLfHWMCWhhc19nYXVzc5RLAIwFZ2F1c3OURwAAAAAAAAAAdWJ1Yi4=", "n": 4, "_shape": [], "dtype": "int64", "_np_random": "RandomState(MT19937)"}, "n_envs": 1, "num_timesteps": 400000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1651785049.8402338, "learning_rate": 0.001, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVywIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxOL2hvbWUvYW50b25pbi9Eb2N1bWVudHMvcmwvc3RhYmxlLWJhc2VsaW5lczMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxOL2hvbWUvYW50b25pbi9Eb2N1bWVudHMvcmwvc3RhYmxlLWJhc2VsaW5lczMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9QYk3S8an8hZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAKZuAb6Fv9Q6NuUXM1nNGjL4kZO8qQUeswAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAAGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAKZuAb6Fv9Q6plL9suXwMzL3kZO83jYFNAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="}, "_episode_num": 1120, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.600001, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVWBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI7ZqQ1phvY0CUhpRSlIwBbJRNuQOMAXSUR0CLJl0yxiXqdX2UKGgGaAloD0MI3PC76VYCckCUhpRSlGgVTQgBaBZHQIsrA593KSx1fZQoaAZoCWgPQwgbKzHPSjNuwJSGlFKUaBVNTAFoFkdAizEdm6GxlnV9lChoBmgJaA9DCHO7l/tkH29AlIaUUpRoFUvxaBZHQIs1QQ6IWP91fZQoaAZoCWgPQwjWGd8XlxxCQJSGlFKUaBVLa2gWR0CLNw0F8ohIdX2UKGgGaAloD0MIEaj+QSQxSkCUhpRSlGgVS5JoFkdAizl3CsOoYXV9lChoBmgJaA9DCA/tYwW/LnBAlIaUUpRoFUv9aBZHQIs9v+OwPiF1fZQoaAZoCWgPQwiqtpvgmzRHQJSGlFKUaBVLX2gWR0CLP1lXiiqRdX2UKGgGaAloD0MIqyFxjyVDY8CUhpRSlGgVTbMDaBZHQItS57qptJp1fZQoaAZoCWgPQwgKZHYWvZMvQJSGlFKUaBVLZ2gWR0CLVJzZpSJkdX2UKGgGaAloD0MIfxKfO8FcbkCUhpRSlGgVTQ8CaBZHQIteKCOFQEZ1fZQoaAZoCWgPQwjYfcfw2Gs4wJSGlFKUaBVLZ2gWR0CLX9slb/wRdX2UKGgGaAloD0MIYaWCiqr5QUCUhpRSlGgVS/1oFkdAi2Q6r/82rHV9lChoBmgJaA9DCBiXqrTFTlvAlIaUUpRoFU0TAWgWR0CLaPoUSIxhdX2UKGgGaAloD0MI0ova/SopUcCUhpRSlGgVTegDaBZHQIt8ZwwTM7l1fZQoaAZoCWgPQwj0bcFS3X1swJSGlFKUaBVNxgNoFkdAi5FBWPtD2XV9lChoBmgJaA9DCDihEAGHEmLAlIaUUpRoFU3oA2gWR0CLpNUo8ZDRdX2UKGgGaAloD0MIJCao4dsQYcCUhpRSlGgVTegDaBZHQIu6105lvqF1fZQoaAZoCWgPQwh2+kFd5BpyQJSGlFKUaBVNAwFoFkdAi79iyQgcLnV9lChoBmgJaA9DCIO/X8yWYW9AlIaUUpRoFU1+AWgWR0CLxi0w8GLUdX2UKGgGaAloD0MINIC3QMKjckCUhpRSlGgVTRoBaBZHQIvLBLK3d9F1fZQoaAZoCWgPQwiN74tLVbBgwJSGlFKUaBVNZAFoFkdAi9FrOzIFNnV9lChoBmgJaA9DCFoQyvs4kklAlIaUUpRoFUuRaBZHQIvT1elbeM11fZQoaAZoCWgPQwi1xMpoJIdwQJSGlFKUaBVL62gWR0CL19RAKOT8dX2UKGgGaAloD0MIY1+y8WCJbUCUhpRSlGgVTR4DaBZHQIvo3dhy8z11fZQoaAZoCWgPQwjXE10X/mdxQJSGlFKUaBVNqwFoFkdAi/EFtTDO1XV9lChoBmgJaA9DCKLw2To4hmNAlIaUUpRoFU3oA2gWR0CMBJfqHGjsdX2UKGgGaAloD0MIZjBGJIpwb0CUhpRSlGgVTSkBaBZHQIwJ54dIXj51fZQoaAZoCWgPQwjG4cyv5p1wQJSGlFKUaBVNWgJoFkdAjBWidjG1hXV9lChoBmgJaA9DCPxQacTM23JAlIaUUpRoFUvUaBZHQIwZOhXbM5h1fZQoaAZoCWgPQwi/nUSE/2VwQJSGlFKUaBVN5wFoFkdAjCIuIInjQ3V9lChoBmgJaA9DCOi/B6/d1m9AlIaUUpRoFU1wAmgWR0CMLacslLOBdX2UKGgGaAloD0MIrRiuDoBWcUCUhpRSlGgVTTMBaBZHQIwzP9vS+g11fZQoaAZoCWgPQwic+GpHcTlVwJSGlFKUaBVN6ANoFkdAjEcSrHU+cHV9lChoBmgJaA9DCGbBxB+F0nFAlIaUUpRoFU0rAWgWR0CMTG+bmU4adX2UKGgGaAloD0MIjlph+t5qb0CUhpRSlGgVTUoCaBZHQIxXVK/VRUF1fZQoaAZoCWgPQwj7lGOyOPRwQJSGlFKUaBVLuWgWR0CMWncnE2pAdX2UKGgGaAloD0MIiSR6GQUncECUhpRSlGgVTS4BaBZHQIxfv09QoCx1fZQoaAZoCWgPQwg57//jBGJwQJSGlFKUaBVNNgFoFkdAjGUt4iX6ZnV9lChoBmgJaA9DCKq2m+CbQkFAlIaUUpRoFUt1aBZHQIxnKXQdCE91fZQoaAZoCWgPQwiIuaRqu5ZpwJSGlFKUaBVNsgNoFkdAjHwx9G7SRnV9lChoBmgJaA9DCAlupGzRMnJAlIaUUpRoFU1jAmgWR0CMh+YrrgO0dX2UKGgGaAloD0MI8xyR71KzUUCUhpRSlGgVS6xoFkdAjIrNRm9QGnV9lChoBmgJaA9DCPKVQEqsRHFAlIaUUpRoFU2RAWgWR0CMkffBvaUSdX2UKGgGaAloD0MIV5V9VwS/PUCUhpRSlGgVS2NoFkdAjJOlrl/6PHV9lChoBmgJaA9DCA7d7A8UDHJAlIaUUpRoFU1dAWgWR0CMmdsj3VTadX2UKGgGaAloD0MIwR2oUx6tJ0CUhpRSlGgVS2poFkdAjJum+9Jz1nV9lChoBmgJaA9DCD5BYrt731XAlIaUUpRoFU3oA2gWR0CMru+pOvdNdX2UKGgGaAloD0MIuFZ72At9a0CUhpRSlGgVTaIBaBZHQIy2e5Dqnm91fZQoaAZoCWgPQwh1BduIZxZwQJSGlFKUaBVNNwFoFkdAjLvnfl6qsHV9lChoBmgJaA9DCFm/mZgu1kRAlIaUUpRoFUuUaBZHQIy+bQb+98J1fZQoaAZoCWgPQwhH5LuUumduQJSGlFKUaBVNZQFoFkdAjMTYbKifx3V9lChoBmgJaA9DCHanO08800fAlIaUUpRoFUttaBZHQIzGrEcbR4R1fZQoaAZoCWgPQwiZDTLJyDkmwJSGlFKUaBVLa2gWR0CMyHb/wRXfdX2UKGgGaAloD0MIRtJu9LHqbkCUhpRSlGgVS+doFkdAjMxeMQ2/BXV9lChoBmgJaA9DCA3BcRm3o21AlIaUUpRoFUvjaBZHQIzQQR5C4SZ1fZQoaAZoCWgPQwjulA7Wf55xQJSGlFKUaBVNvANoFkdAjOJxkNFz+3V9lChoBmgJaA9DCKKzzCIUBG5AlIaUUpRoFUvTaBZHQIzl+5SWJJp1fZQoaAZoCWgPQwjTMecZ+zVxQJSGlFKUaBVNUQFoFkdAjOvlzU7SzHV9lChoBmgJaA9DCLkXmBWKLEDAlIaUUpRoFUtyaBZHQIztwEyLyc11fZQoaAZoCWgPQwjHnGfsS246QJSGlFKUaBVLkGgWR0CM8CWbgCOndX2UKGgGaAloD0MIkE3yI346b0CUhpRSlGgVTRkCaBZHQIz6PPVurIZ1fZQoaAZoCWgPQwgIOlrV0htwQJSGlFKUaBVLqWgWR0CM/Rf8/D+BdX2UKGgGaAloD0MIGmt/Z3sUEMCUhpRSlGgVS1BoFkdAjP5o2OyVwHV9lChoBmgJaA9DCF7yP/k7H3FAlIaUUpRoFUvaaBZHQI0CFfb9If91fZQoaAZoCWgPQwjhC5OpgnNJQJSGlFKUaBVLiWgWR0CNBFIOH310dX2UKGgGaAloD0MI2SH+YUtZS0CUhpRSlGgVS5BoFkdAjQbAfMfRu3V9lChoBmgJaA9DCAcoDTWK3W1AlIaUUpRoFUvLaBZHQI0KLlPrOZ91fZQoaAZoCWgPQwg5QgbybDtvQJSGlFKUaBVL+2gWR0CNDnsImgJ1dX2UKGgGaAloD0MIaHdIMUD0b0CUhpRSlGgVS7VoFkdAjRF8xKxs23V9lChoBmgJaA9DCJoGRfMAY3NAlIaUUpRoFU1dAWgWR0CNF7fBN21VdX2UKGgGaAloD0MIzQNY5Nfgb0CUhpRSlGgVTRUBaBZHQI0chhF3IMl1fZQoaAZoCWgPQwhvfsNEQyZxQJSGlFKUaBVNBwFoFkdAjSEEJKJ2uHV9lChoBmgJaA9DCLQ4Y5hT/3JAlIaUUpRoFU3zAWgWR0CNKbGax5cDdX2UKGgGaAloD0MIz4QmieWMcUCUhpRSlGgVTXkBaBZHQI0wfRLK3d91fZQoaAZoCWgPQwjhmdAkMSZzQJSGlFKUaBVNoAFoFkdAjTfWeQMhHXV9lChoBmgJaA9DCMa+ZOPBRjNAlIaUUpRoFUtwaBZHQI05uaOPvKF1fZQoaAZoCWgPQwjXoC+9PYFxQJSGlFKUaBVNdQFoFkdAjUBqgZjx1HV9lChoBmgJaA9DCDElkuhlaEZAlIaUUpRoFUt4aBZHQI1CabKA8Sx1fZQoaAZoCWgPQwiWQErsGuZxQJSGlFKUaBVNOQFoFkdAjUfvnjhky3V9lChoBmgJaA9DCBRCB13CM3FAlIaUUpRoFU0DAWgWR0CNTGzru6VddX2UKGgGaAloD0MICK9d2nAOc0CUhpRSlGgVTTEBaBZHQI1RuGM4tHx1fZQoaAZoCWgPQwhAwcWK2sdxQJSGlFKUaBVNDQFoFkdAjVZbtAs053V9lChoBmgJaA9DCJ7vp8ZLFHNAlIaUUpRoFU0EAWgWR0CNWtgxagVXdX2UKGgGaAloD0MI8rBQa5qCcECUhpRSlGgVS9poFkdAjV6WluWKM3V9lChoBmgJaA9DCHBE96zrHm9AlIaUUpRoFUvBaBZHQI1hznxJ/Xp1fZQoaAZoCWgPQwiW0F0Sp8tyQJSGlFKUaBVNDwFoFkdAjWZ7vG6wuHV9lChoBmgJaA9DCO52vTRFqEJAlIaUUpRoFUtiaBZHQI1oFBppN9J1fZQoaAZoCWgPQwh/F7Zmq35yQJSGlFKUaBVNhgFoFkdAjW8axxDLKXV9lChoBmgJaA9DCMECmDJwwOG/lIaUUpRoFUtUaBZHQI1weaDwpfB1fZQoaAZoCWgPQwgP8nowKfJuQJSGlFKUaBVNGAFoFkdAjXVKsMiKSHV9lChoBmgJaA9DCO244XeTlXBAlIaUUpRoFU2JAmgWR0CNgSSOinHedX2UKGgGaAloD0MIwjV39D+XZECUhpRSlGgVTegDaBZHQI2UK+FlCkZ1fZQoaAZoCWgPQwhpAkUsYmFcQJSGlFKUaBVN6ANoFkdAjacETHsC1nV9lChoBmgJaA9DCKuwGeCCqkrAlIaUUpRoFUuoaBZHQI2p3zH0btJ1fZQoaAZoCWgPQwh/iXjr/ARzQJSGlFKUaBVL9WgWR0CNrhDBMzuXdX2UKGgGaAloD0MItr3dkpwpb0CUhpRSlGgVTT4BaBZHQI2z0guAZsN1fZQoaAZoCWgPQwjnOo20VA5HQJSGlFKUaBVLiGgWR0CNthqWTot+dX2UKGgGaAloD0MIWyOCcfDBZkCUhpRSlGgVTegDaBZHQI3Imvr4WUN1fZQoaAZoCWgPQwgQkZp28RxxQJSGlFKUaBVN5wJoFkdAjddQCr92o3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 399996, "buffer_size": 50000, "batch_size": 128, "learning_starts": 0, "tau": 1.0, "gamma": 0.99, "gradient_steps": -1, "optimize_memory_usage": false, "replay_buffer_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVNQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwMUmVwbGF5QnVmZmVylJOULg==", "__module__": "stable_baselines3.common.buffers", "__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device:\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ", "__init__": "<function ReplayBuffer.__init__ at 0x7ff4901f8200>", "add": "<function ReplayBuffer.add at 0x7ff4901f8050>", "sample": "<function ReplayBuffer.sample at 0x7ff4901efb90>", "_get_samples": "<function ReplayBuffer._get_samples at 0x7ff4901efc20>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7ff4902408d0>"}, "replay_buffer_kwargs": {}, "train_freq": {":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>", ":serialized:": "gAWVYQAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLBGgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMBHN0ZXCUhZRSlIaUgZQu"}, "actor": null, "use_sde_at_warmup": false, "exploration_initial_eps": 1.0, "exploration_final_eps": 0.1, "exploration_fraction": 0.02, "target_update_interval": 250, "_n_calls": 399999, "max_grad_norm": 10, "exploration_rate": 0.1, "exploration_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVbwMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsESxNDLGQBfAAYAIgBawRyEIgAUwCIAmQBfAAYAIgAiAIYABQAiAEbABcAUwBkAFMAlE5LAYaUKYwScHJvZ3Jlc3NfcmVtYWluaW5nlIWUjE4vaG9tZS9hbnRvbmluL0RvY3VtZW50cy9ybC9zdGFibGUtYmFzZWxpbmVzMy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEtuQwYAAQwBBAKUjANlbmSUjAxlbmRfZnJhY3Rpb26UjAVzdGFydJSHlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjE4vaG9tZS9hbnRvbmluL0RvY3VtZW50cy9ybC9zdGFibGUtYmFzZWxpbmVzMy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpRoHilSlGgeKVKUh5R0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCR9lH2UKGgZaA6MDF9fcXVhbG5hbWVfX5SMG2dldF9saW5lYXJfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lChoC4wIYnVpbHRpbnOUjAVmbG9hdJSTlIwGcmV0dXJulGgwdYwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBqMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP7mZmZmZmZqFlFKUaDhHP5R64UeuFHuFlFKUaDhHP/AAAAAAAACFlFKUh5SMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "system_info": {"OS": "Linux-5.13.0-40-generic-x86_64-with-debian-bullseye-sid #45~20.04.1-Ubuntu SMP Mon Apr 4 09:38:31 UTC 2022", "Python": "3.7.10", "Stable-Baselines3": "1.5.1a5", "PyTorch": "1.11.0", "GPU Enabled": "True", "Numpy": "1.21.2", "Gym": "0.21.0"}}
|
dqn-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d3a43f6e370205eedb3627e8f50bc8527f560fc6f81c160f89f8c3274a3a224b
|
3 |
+
size 1133604
|
dqn-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.5.1a5
|
dqn-LunarLander-v2/data
ADDED
@@ -0,0 +1,120 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVMAAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLmRxbi5wb2xpY2llc5SMCURRTlBvbGljeZSTlC4=",
|
5 |
+
"__module__": "stable_baselines3.dqn.policies",
|
6 |
+
"__doc__": "\n Policy class with Q-Value Net and target net for DQN\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function DQNPolicy.__init__ at 0x7ff48fd84b90>",
|
8 |
+
"_build": "<function DQNPolicy._build at 0x7ff48fd84c20>",
|
9 |
+
"make_q_net": "<function DQNPolicy.make_q_net at 0x7ff48fd84cb0>",
|
10 |
+
"forward": "<function DQNPolicy.forward at 0x7ff48fd84d40>",
|
11 |
+
"_predict": "<function DQNPolicy._predict at 0x7ff48fd84dd0>",
|
12 |
+
"_get_constructor_parameters": "<function DQNPolicy._get_constructor_parameters at 0x7ff48fd84e60>",
|
13 |
+
"set_training_mode": "<function DQNPolicy.set_training_mode at 0x7ff48fd84ef0>",
|
14 |
+
"__abstractmethods__": "frozenset()",
|
15 |
+
"_abc_impl": "<_abc_data object at 0x7ff48fd6ea50>"
|
16 |
+
},
|
17 |
+
"verbose": 1,
|
18 |
+
"policy_kwargs": {
|
19 |
+
"net_arch": [
|
20 |
+
256,
|
21 |
+
256
|
22 |
+
]
|
23 |
+
},
|
24 |
+
"observation_space": {
|
25 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
26 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
27 |
+
"dtype": "float32",
|
28 |
+
"_shape": [
|
29 |
+
8
|
30 |
+
],
|
31 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
32 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
33 |
+
"bounded_below": "[False False False False False False False False]",
|
34 |
+
"bounded_above": "[False False False False False False False False]",
|
35 |
+
"_np_random": null
|
36 |
+
},
|
37 |
+
"action_space": {
|
38 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
39 |
+
":serialized:": "gAWVLgsAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwSX19yYW5kb21zdGF0ZV9jdG9ylJOUjAdNVDE5OTM3lIWUUpR9lCiMDWJpdF9nZW5lcmF0b3KUaBOMBXN0YXRllH2UKIwDa2V5lIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolsAJAAAAAAAAi+0H7kPAgdBuF030bXyF7n2u5dW6SEXCM6tqhq5MMNXq+cbpYKU+zAzhfMglymx9sMzDGYTfQRH4kTtg/+PN+E7XQ0i+0/yR1PtBH9/3gPBWXKxyu2AO2p/qkjxmLGWCZn0+UiHyaWNFHtBiQEMwiw2h6lpKvsKhHsuTR7djb2nBoI9EED7FcI/Py4KJ0iVYC8sIO5cWOx1VGU9DIoJg9G0f6njGxrQHddg3EiOpmds/fQhkuA/kWAV7Va/RqY6vV5SoT9jGIrGTSFCeb7+WZvi7bZcNThjmSkQstVQl/dPZI7Ll5uJeZG5B+wVrCaTDUUWD9Cew/l8Tclds8cKF02COYnS9amO651a18QxFuLfWa+xUS5gtI13kUx1cFz6jes4rJsKvad24n7XVjXU8kOOiCrYsZKSounjnkBpP29ErNdk1kDclaSZ/NZefVVVZCB3LURHzKqp0/mPWP45BBqmpqY+LMVvPfRij7KRor9630PK3rE+ZV03ezCoeVY5tzaYqn4d0EwaxEyXo9YSHq4R7F8NMWMvZ49dL1Eha10yI8Iw7YeTAfPHth26TM2i7GzMBna2KP8p+PuIYi60Rvn4p5iqBdZ0ULEvnxwBo2M6KK6KSmEI4DviMhemrjdL4Gwlwi2EPjBJ7JojJKepsNijm3DOqaGrDj2T9AAIjPcYAC6CWc237RhfxnR0A2zXlgLgm3Q86s3nBMI6Qp7jfrwLc0iUeqVQYAxIzL9S7Nqo64o6s+CM6sj49MfRSTMyIy7YaMd9uAPg3chlEYSQu6Hq/IN3t2/7wAMbWD91cSwIfANN3aClYZXcmq9laWrrdG13K1vbwyR3JhIRDgrQpcM6DtLxzjNfXgWiTBXMMpXhm7D7VyFEp7fS0Q0SMoeOOUcaUv2552el+Cw2VlGHWzFHqbSERirbnjEsanughZkWdGTTonv1D5JKMeiVEgP3jATz8pSd8Hz15Mrwit3PvJZe8jxIfVziMOT02+1yoccP3V5lyu+B60DKF89P0rQ1QgqYwbJ4rLAZTjiJQzsji6nCAFPmEYjS+Z9RqMrH73T01LM8HlsNNWh8sFBW1ynzwQVavYR5ZbvFKTTBSMYuLBc+HQ+tSiG6mp4P6YoIQrxJtiBlB2CNP0VBnv3mTl3KlnZyiJCkUd2zwnPPXzplSpqneFZAPw0d2ORoIf3GzfOWgrGAaFOJFoJ+8mo3wS+hON980FI+07me6Ltb2okjb+aVEdiCa9Pz2Dyph0Sh6mMYhw035NBSry2bniV26UBwQG7nY/V4/00wb+BOHaCVo+yZs/6GoegBTGg+lGdXtNaL/2eukMrUKatC3vxywAULK/H5OG9B/3UVf38mPn+UxvR5S00pms/5JPRdmxKbaS5K29pI4t5iFRUUt15YGyVRmnlbnpEi3k4g4/4CiPCztQM+iYxCgmNMg09INWFruoe2T5KUamUHVl87uolOSX2gVRw7W482NjYUi0RIf/HaJjW+hlV1jpOFkgtWK5w/n3LekLH3WuAYJmcTWKBx62n7Ohw3tW6pAs6RFoFF0yqgwO2qICg9ZnVMuVRxELcQS1QoKjJeTc8uSD1sHmTFUowjszbtgh3HYgHJPeuSkK76v6lkIgW4qVd/0ZIVH5u0PgbFLt3/yjYp/Kj+N2+C0BI4stxrKLuWTSIwTvOAIWK0vLNjR6J5hHNbYjQviMnvvXAV93sWtzUk7Ic2hwekP49NfshHfNlyjMvf7bNo6ubF66X75u4wIrEoqp3NexJjwGBOeNd82ZgZ0cudhIj0KLAhp1zE/HwbfEzex1an5h+qv98TXWlotPxM8VFAKjsoAEBpLkd1lWNTNi7xfZjIk8GwDEiIchoJSDlJ5H7FYgFYfwaEiZnXj/TyqEAZmPHzMGvSr/mGTEPMz5DhR09/PNbxa48W05hXprxSp8UNdgH2AKLYVYYkVxCp32+cw2S0Xel2+zkqJxvswuqMjIG5QF7/S6P1hh+oUjng+vaPQI+TigR9jsIjSnmYgrvbDLxYOU464rUydraaJyLsiY7dHNlGBM2TPq2p6m5V/u5VEgvh5Tsbe4PiTKuEO6dt02HNjeesCs0zg8zSEqlLyJY63L70Rhv5p/D5KPr30cl7CZMpQwx+YCBwIxHqPh0iYQmXF6IqtRIXzfR/nIiFXD+ab+eJMWcPS2sszudDz/gWk1lAiaiEHhx7gysqWgus5miGMO5NpkNJcGcJKf1CcbYuRkUxgGMFWenhvk/Z4Qq8jxW09o2vfmwgj9UHVS9qklPSKQMHKxjNoHewUoZOfLA4JRidZCjLmNOb1QxJ+Wz6Ylvv3tHiEOmJidZ8Mv6+vFmBKjQn5mFOXKO+SSWDFJRG+DESY49mdHeK+mPcXc4BlijFN8pqgBmEkQNDANMJdpgn8l3czwSNQ3X3pQQsAuxPJVWll+3/xdxqW+nvu3X9K5cshtK8vcc9Hf9vgckA+VFtfGImemSTN4PrE3pnsiAzZWkSr6dMj7ZiaCWMZsHA2+pT7pVsthkamlnXMrUxOGJI+/e23i1ffBBHBDyLhPfYsSwDFRcrRBjeLitbyAzt5LNmQP5ZmEg9W63psrWE6b6cgTbHnQdjS29ANVCfoemnE1huWCRUTaprVY3dRLBZ6QMN6f99AK1GUtxZmCjpQtPbKhzqR3rm+qz7Mc+t9ufhpp5JktB7CPrj3RqHoXsEV7nv90hmBlItmKHKC76YOCtD4kWXe9RB44HEGkKNfpANu3P9QXCvR4WLdHzeLM2QYkIX57qnH+3wbPjSJZ3yU5nIR4VtNbqB7ut5EsObBkhSRPt5Fc7n+m5vqEUiQN5fv6XQ5e99rmKMpRlKhb8zBsEOIU5NQJeYCjDfFRSqVPcHu6YuV2HLZwmJmgoR4HA/lCD9YCia2qGdov8Z+ehtjeHgmSq7scxhYQUTQdFwdqJBaQtYy+RlnEgdoAYaPWQiylfPHUolc654nhWPUhYykmO6VXX18uRPoVob43P79piLjIaXSD6wGF2rSOT0z8gmCprxrZjz1UC2PQHQhNblE89oYdyCR5vDZrkJirmINMInquEMniyhOnA+VEiON/MUrekVhiAYZ+vtI1koLTNdcLJVdBUDFcUnlNcXCITQ5eEdLjlk3BtJudqBNto8CA1OsL+YwD6c0bwrKIwXRXgwG3tVntoqpdmglnp8KptkY8mozou6d0cCTm7gjW/HOmF5pUcG/WL3IQpGfKh7ZB2Hni7VhGjZf5OKJhigkf1+mN0gbgQFYN/c2RH4A0OtRyEhXK3NMIEFjQ9mOeRGBvqNyUUsrP0Pg12uLMIFI//jQo8acuGJSlGgJjAJ1NJSJiIeUUpQoSwNoDU5OTkr/////Sv////9LAHSUYk1wAoWUjAFDlHSUUpSMA3Bvc5RLfHWMCWhhc19nYXVzc5RLAIwFZ2F1c3OURwAAAAAAAAAAdWJ1Yi4=",
|
40 |
+
"n": 4,
|
41 |
+
"_shape": [],
|
42 |
+
"dtype": "int64",
|
43 |
+
"_np_random": "RandomState(MT19937)"
|
44 |
+
},
|
45 |
+
"n_envs": 1,
|
46 |
+
"num_timesteps": 400000,
|
47 |
+
"_total_timesteps": 1000000,
|
48 |
+
"_num_timesteps_at_start": 0,
|
49 |
+
"seed": null,
|
50 |
+
"action_noise": null,
|
51 |
+
"start_time": 1651785049.8402338,
|
52 |
+
"learning_rate": 0.001,
|
53 |
+
"tensorboard_log": null,
|
54 |
+
"lr_schedule": {
|
55 |
+
":type:": "<class 'function'>",
|
56 |
+
":serialized:": "gAWVywIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxOL2hvbWUvYW50b25pbi9Eb2N1bWVudHMvcmwvc3RhYmxlLWJhc2VsaW5lczMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxOL2hvbWUvYW50b25pbi9Eb2N1bWVudHMvcmwvc3RhYmxlLWJhc2VsaW5lczMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9QYk3S8an8hZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
57 |
+
},
|
58 |
+
"_last_obs": {
|
59 |
+
":type:": "<class 'numpy.ndarray'>",
|
60 |
+
":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAKZuAb6Fv9Q6NuUXM1nNGjL4kZO8qQUeswAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="
|
61 |
+
},
|
62 |
+
"_last_episode_starts": {
|
63 |
+
":type:": "<class 'numpy.ndarray'>",
|
64 |
+
":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAAGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="
|
65 |
+
},
|
66 |
+
"_last_original_obs": {
|
67 |
+
":type:": "<class 'numpy.ndarray'>",
|
68 |
+
":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAKZuAb6Fv9Q6plL9suXwMzL3kZO83jYFNAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="
|
69 |
+
},
|
70 |
+
"_episode_num": 1120,
|
71 |
+
"use_sde": false,
|
72 |
+
"sde_sample_freq": -1,
|
73 |
+
"_current_progress_remaining": 0.600001,
|
74 |
+
"ep_info_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVWBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI7ZqQ1phvY0CUhpRSlIwBbJRNuQOMAXSUR0CLJl0yxiXqdX2UKGgGaAloD0MI3PC76VYCckCUhpRSlGgVTQgBaBZHQIsrA593KSx1fZQoaAZoCWgPQwgbKzHPSjNuwJSGlFKUaBVNTAFoFkdAizEdm6GxlnV9lChoBmgJaA9DCHO7l/tkH29AlIaUUpRoFUvxaBZHQIs1QQ6IWP91fZQoaAZoCWgPQwjWGd8XlxxCQJSGlFKUaBVLa2gWR0CLNw0F8ohIdX2UKGgGaAloD0MIEaj+QSQxSkCUhpRSlGgVS5JoFkdAizl3CsOoYXV9lChoBmgJaA9DCA/tYwW/LnBAlIaUUpRoFUv9aBZHQIs9v+OwPiF1fZQoaAZoCWgPQwiqtpvgmzRHQJSGlFKUaBVLX2gWR0CLP1lXiiqRdX2UKGgGaAloD0MIqyFxjyVDY8CUhpRSlGgVTbMDaBZHQItS57qptJp1fZQoaAZoCWgPQwgKZHYWvZMvQJSGlFKUaBVLZ2gWR0CLVJzZpSJkdX2UKGgGaAloD0MIfxKfO8FcbkCUhpRSlGgVTQ8CaBZHQIteKCOFQEZ1fZQoaAZoCWgPQwjYfcfw2Gs4wJSGlFKUaBVLZ2gWR0CLX9slb/wRdX2UKGgGaAloD0MIYaWCiqr5QUCUhpRSlGgVS/1oFkdAi2Q6r/82rHV9lChoBmgJaA9DCBiXqrTFTlvAlIaUUpRoFU0TAWgWR0CLaPoUSIxhdX2UKGgGaAloD0MI0ova/SopUcCUhpRSlGgVTegDaBZHQIt8ZwwTM7l1fZQoaAZoCWgPQwj0bcFS3X1swJSGlFKUaBVNxgNoFkdAi5FBWPtD2XV9lChoBmgJaA9DCDihEAGHEmLAlIaUUpRoFU3oA2gWR0CLpNUo8ZDRdX2UKGgGaAloD0MIJCao4dsQYcCUhpRSlGgVTegDaBZHQIu6105lvqF1fZQoaAZoCWgPQwh2+kFd5BpyQJSGlFKUaBVNAwFoFkdAi79iyQgcLnV9lChoBmgJaA9DCIO/X8yWYW9AlIaUUpRoFU1+AWgWR0CLxi0w8GLUdX2UKGgGaAloD0MINIC3QMKjckCUhpRSlGgVTRoBaBZHQIvLBLK3d9F1fZQoaAZoCWgPQwiN74tLVbBgwJSGlFKUaBVNZAFoFkdAi9FrOzIFNnV9lChoBmgJaA9DCFoQyvs4kklAlIaUUpRoFUuRaBZHQIvT1elbeM11fZQoaAZoCWgPQwi1xMpoJIdwQJSGlFKUaBVL62gWR0CL19RAKOT8dX2UKGgGaAloD0MIY1+y8WCJbUCUhpRSlGgVTR4DaBZHQIvo3dhy8z11fZQoaAZoCWgPQwjXE10X/mdxQJSGlFKUaBVNqwFoFkdAi/EFtTDO1XV9lChoBmgJaA9DCKLw2To4hmNAlIaUUpRoFU3oA2gWR0CMBJfqHGjsdX2UKGgGaAloD0MIZjBGJIpwb0CUhpRSlGgVTSkBaBZHQIwJ54dIXj51fZQoaAZoCWgPQwjG4cyv5p1wQJSGlFKUaBVNWgJoFkdAjBWidjG1hXV9lChoBmgJaA9DCPxQacTM23JAlIaUUpRoFUvUaBZHQIwZOhXbM5h1fZQoaAZoCWgPQwi/nUSE/2VwQJSGlFKUaBVN5wFoFkdAjCIuIInjQ3V9lChoBmgJaA9DCOi/B6/d1m9AlIaUUpRoFU1wAmgWR0CMLacslLOBdX2UKGgGaAloD0MIrRiuDoBWcUCUhpRSlGgVTTMBaBZHQIwzP9vS+g11fZQoaAZoCWgPQwic+GpHcTlVwJSGlFKUaBVN6ANoFkdAjEcSrHU+cHV9lChoBmgJaA9DCGbBxB+F0nFAlIaUUpRoFU0rAWgWR0CMTG+bmU4adX2UKGgGaAloD0MIjlph+t5qb0CUhpRSlGgVTUoCaBZHQIxXVK/VRUF1fZQoaAZoCWgPQwj7lGOyOPRwQJSGlFKUaBVLuWgWR0CMWncnE2pAdX2UKGgGaAloD0MIiSR6GQUncECUhpRSlGgVTS4BaBZHQIxfv09QoCx1fZQoaAZoCWgPQwg57//jBGJwQJSGlFKUaBVNNgFoFkdAjGUt4iX6ZnV9lChoBmgJaA9DCKq2m+CbQkFAlIaUUpRoFUt1aBZHQIxnKXQdCE91fZQoaAZoCWgPQwiIuaRqu5ZpwJSGlFKUaBVNsgNoFkdAjHwx9G7SRnV9lChoBmgJaA9DCAlupGzRMnJAlIaUUpRoFU1jAmgWR0CMh+YrrgO0dX2UKGgGaAloD0MI8xyR71KzUUCUhpRSlGgVS6xoFkdAjIrNRm9QGnV9lChoBmgJaA9DCPKVQEqsRHFAlIaUUpRoFU2RAWgWR0CMkffBvaUSdX2UKGgGaAloD0MIV5V9VwS/PUCUhpRSlGgVS2NoFkdAjJOlrl/6PHV9lChoBmgJaA9DCA7d7A8UDHJAlIaUUpRoFU1dAWgWR0CMmdsj3VTadX2UKGgGaAloD0MIwR2oUx6tJ0CUhpRSlGgVS2poFkdAjJum+9Jz1nV9lChoBmgJaA9DCD5BYrt731XAlIaUUpRoFU3oA2gWR0CMru+pOvdNdX2UKGgGaAloD0MIuFZ72At9a0CUhpRSlGgVTaIBaBZHQIy2e5Dqnm91fZQoaAZoCWgPQwh1BduIZxZwQJSGlFKUaBVNNwFoFkdAjLvnfl6qsHV9lChoBmgJaA9DCFm/mZgu1kRAlIaUUpRoFUuUaBZHQIy+bQb+98J1fZQoaAZoCWgPQwhH5LuUumduQJSGlFKUaBVNZQFoFkdAjMTYbKifx3V9lChoBmgJaA9DCHanO08800fAlIaUUpRoFUttaBZHQIzGrEcbR4R1fZQoaAZoCWgPQwiZDTLJyDkmwJSGlFKUaBVLa2gWR0CMyHb/wRXfdX2UKGgGaAloD0MIRtJu9LHqbkCUhpRSlGgVS+doFkdAjMxeMQ2/BXV9lChoBmgJaA9DCA3BcRm3o21AlIaUUpRoFUvjaBZHQIzQQR5C4SZ1fZQoaAZoCWgPQwjulA7Wf55xQJSGlFKUaBVNvANoFkdAjOJxkNFz+3V9lChoBmgJaA9DCKKzzCIUBG5AlIaUUpRoFUvTaBZHQIzl+5SWJJp1fZQoaAZoCWgPQwjTMecZ+zVxQJSGlFKUaBVNUQFoFkdAjOvlzU7SzHV9lChoBmgJaA9DCLkXmBWKLEDAlIaUUpRoFUtyaBZHQIztwEyLyc11fZQoaAZoCWgPQwjHnGfsS246QJSGlFKUaBVLkGgWR0CM8CWbgCOndX2UKGgGaAloD0MIkE3yI346b0CUhpRSlGgVTRkCaBZHQIz6PPVurIZ1fZQoaAZoCWgPQwgIOlrV0htwQJSGlFKUaBVLqWgWR0CM/Rf8/D+BdX2UKGgGaAloD0MIGmt/Z3sUEMCUhpRSlGgVS1BoFkdAjP5o2OyVwHV9lChoBmgJaA9DCF7yP/k7H3FAlIaUUpRoFUvaaBZHQI0CFfb9If91fZQoaAZoCWgPQwjhC5OpgnNJQJSGlFKUaBVLiWgWR0CNBFIOH310dX2UKGgGaAloD0MI2SH+YUtZS0CUhpRSlGgVS5BoFkdAjQbAfMfRu3V9lChoBmgJaA9DCAcoDTWK3W1AlIaUUpRoFUvLaBZHQI0KLlPrOZ91fZQoaAZoCWgPQwg5QgbybDtvQJSGlFKUaBVL+2gWR0CNDnsImgJ1dX2UKGgGaAloD0MIaHdIMUD0b0CUhpRSlGgVS7VoFkdAjRF8xKxs23V9lChoBmgJaA9DCJoGRfMAY3NAlIaUUpRoFU1dAWgWR0CNF7fBN21VdX2UKGgGaAloD0MIzQNY5Nfgb0CUhpRSlGgVTRUBaBZHQI0chhF3IMl1fZQoaAZoCWgPQwhvfsNEQyZxQJSGlFKUaBVNBwFoFkdAjSEEJKJ2uHV9lChoBmgJaA9DCLQ4Y5hT/3JAlIaUUpRoFU3zAWgWR0CNKbGax5cDdX2UKGgGaAloD0MIz4QmieWMcUCUhpRSlGgVTXkBaBZHQI0wfRLK3d91fZQoaAZoCWgPQwjhmdAkMSZzQJSGlFKUaBVNoAFoFkdAjTfWeQMhHXV9lChoBmgJaA9DCMa+ZOPBRjNAlIaUUpRoFUtwaBZHQI05uaOPvKF1fZQoaAZoCWgPQwjXoC+9PYFxQJSGlFKUaBVNdQFoFkdAjUBqgZjx1HV9lChoBmgJaA9DCDElkuhlaEZAlIaUUpRoFUt4aBZHQI1CabKA8Sx1fZQoaAZoCWgPQwiWQErsGuZxQJSGlFKUaBVNOQFoFkdAjUfvnjhky3V9lChoBmgJaA9DCBRCB13CM3FAlIaUUpRoFU0DAWgWR0CNTGzru6VddX2UKGgGaAloD0MICK9d2nAOc0CUhpRSlGgVTTEBaBZHQI1RuGM4tHx1fZQoaAZoCWgPQwhAwcWK2sdxQJSGlFKUaBVNDQFoFkdAjVZbtAs053V9lChoBmgJaA9DCJ7vp8ZLFHNAlIaUUpRoFU0EAWgWR0CNWtgxagVXdX2UKGgGaAloD0MI8rBQa5qCcECUhpRSlGgVS9poFkdAjV6WluWKM3V9lChoBmgJaA9DCHBE96zrHm9AlIaUUpRoFUvBaBZHQI1hznxJ/Xp1fZQoaAZoCWgPQwiW0F0Sp8tyQJSGlFKUaBVNDwFoFkdAjWZ7vG6wuHV9lChoBmgJaA9DCO52vTRFqEJAlIaUUpRoFUtiaBZHQI1oFBppN9J1fZQoaAZoCWgPQwh/F7Zmq35yQJSGlFKUaBVNhgFoFkdAjW8axxDLKXV9lChoBmgJaA9DCMECmDJwwOG/lIaUUpRoFUtUaBZHQI1weaDwpfB1fZQoaAZoCWgPQwgP8nowKfJuQJSGlFKUaBVNGAFoFkdAjXVKsMiKSHV9lChoBmgJaA9DCO244XeTlXBAlIaUUpRoFU2JAmgWR0CNgSSOinHedX2UKGgGaAloD0MIwjV39D+XZECUhpRSlGgVTegDaBZHQI2UK+FlCkZ1fZQoaAZoCWgPQwhpAkUsYmFcQJSGlFKUaBVN6ANoFkdAjacETHsC1nV9lChoBmgJaA9DCKuwGeCCqkrAlIaUUpRoFUuoaBZHQI2p3zH0btJ1fZQoaAZoCWgPQwh/iXjr/ARzQJSGlFKUaBVL9WgWR0CNrhDBMzuXdX2UKGgGaAloD0MItr3dkpwpb0CUhpRSlGgVTT4BaBZHQI2z0guAZsN1fZQoaAZoCWgPQwjnOo20VA5HQJSGlFKUaBVLiGgWR0CNthqWTot+dX2UKGgGaAloD0MIWyOCcfDBZkCUhpRSlGgVTegDaBZHQI3Imvr4WUN1fZQoaAZoCWgPQwgQkZp28RxxQJSGlFKUaBVN5wJoFkdAjddQCr92o3VlLg=="
|
77 |
+
},
|
78 |
+
"ep_success_buffer": {
|
79 |
+
":type:": "<class 'collections.deque'>",
|
80 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
81 |
+
},
|
82 |
+
"_n_updates": 399996,
|
83 |
+
"buffer_size": 50000,
|
84 |
+
"batch_size": 128,
|
85 |
+
"learning_starts": 0,
|
86 |
+
"tau": 1.0,
|
87 |
+
"gamma": 0.99,
|
88 |
+
"gradient_steps": -1,
|
89 |
+
"optimize_memory_usage": false,
|
90 |
+
"replay_buffer_class": {
|
91 |
+
":type:": "<class 'abc.ABCMeta'>",
|
92 |
+
":serialized:": "gAWVNQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwMUmVwbGF5QnVmZmVylJOULg==",
|
93 |
+
"__module__": "stable_baselines3.common.buffers",
|
94 |
+
"__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device:\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ",
|
95 |
+
"__init__": "<function ReplayBuffer.__init__ at 0x7ff4901f8200>",
|
96 |
+
"add": "<function ReplayBuffer.add at 0x7ff4901f8050>",
|
97 |
+
"sample": "<function ReplayBuffer.sample at 0x7ff4901efb90>",
|
98 |
+
"_get_samples": "<function ReplayBuffer._get_samples at 0x7ff4901efc20>",
|
99 |
+
"__abstractmethods__": "frozenset()",
|
100 |
+
"_abc_impl": "<_abc_data object at 0x7ff4902408d0>"
|
101 |
+
},
|
102 |
+
"replay_buffer_kwargs": {},
|
103 |
+
"train_freq": {
|
104 |
+
":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>",
|
105 |
+
":serialized:": "gAWVYQAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLBGgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMBHN0ZXCUhZRSlIaUgZQu"
|
106 |
+
},
|
107 |
+
"actor": null,
|
108 |
+
"use_sde_at_warmup": false,
|
109 |
+
"exploration_initial_eps": 1.0,
|
110 |
+
"exploration_final_eps": 0.1,
|
111 |
+
"exploration_fraction": 0.02,
|
112 |
+
"target_update_interval": 250,
|
113 |
+
"_n_calls": 399999,
|
114 |
+
"max_grad_norm": 10,
|
115 |
+
"exploration_rate": 0.1,
|
116 |
+
"exploration_schedule": {
|
117 |
+
":type:": "<class 'function'>",
|
118 |
+
":serialized:": "gAWVbwMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsESxNDLGQBfAAYAIgBawRyEIgAUwCIAmQBfAAYAIgAiAIYABQAiAEbABcAUwBkAFMAlE5LAYaUKYwScHJvZ3Jlc3NfcmVtYWluaW5nlIWUjE4vaG9tZS9hbnRvbmluL0RvY3VtZW50cy9ybC9zdGFibGUtYmFzZWxpbmVzMy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEtuQwYAAQwBBAKUjANlbmSUjAxlbmRfZnJhY3Rpb26UjAVzdGFydJSHlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjE4vaG9tZS9hbnRvbmluL0RvY3VtZW50cy9ybC9zdGFibGUtYmFzZWxpbmVzMy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpRoHilSlGgeKVKUh5R0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCR9lH2UKGgZaA6MDF9fcXVhbG5hbWVfX5SMG2dldF9saW5lYXJfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lChoC4wIYnVpbHRpbnOUjAVmbG9hdJSTlIwGcmV0dXJulGgwdYwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBqMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP7mZmZmZmZqFlFKUaDhHP5R64UeuFHuFlFKUaDhHP/AAAAAAAACFlFKUh5SMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
119 |
+
}
|
120 |
+
}
|
dqn-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8ff67d42b058a103f6fc9d73acb72cd63019f7594e9127b94ec8126dd5627102
|
3 |
+
size 556353
|
dqn-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5bb5bc1d1d39548cc17225cc21911ef3e5c885dd731bcc617e38dd22166f74e8
|
3 |
+
size 557057
|
dqn-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
dqn-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.13.0-40-generic-x86_64-with-debian-bullseye-sid #45~20.04.1-Ubuntu SMP Mon Apr 4 09:38:31 UTC 2022
|
2 |
+
Python: 3.7.10
|
3 |
+
Stable-Baselines3: 1.5.1a5
|
4 |
+
PyTorch: 1.11.0
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.2
|
7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:be81f2d96a7971924dae0a7226f841eb8ad3ecd130a027ceb2a6bf479cc93f1b
|
3 |
+
size 198835
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 256.4044445, "std_reward": 20.749781801216276, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-05T23:30:27.319583"}
|