File size: 2,615 Bytes
740882f
 
 
 
d6eb9bc
740882f
 
 
 
 
 
 
 
 
 
 
d6eb9bc
740882f
d6eb9bc
 
 
740882f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2d9955e
740882f
 
 
 
 
d6eb9bc
740882f
 
 
 
2d9955e
 
d6eb9bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
740882f
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
---
license: apache-2.0
tags:
- automatic-speech-recognition
- /workspace/data/hy/noizy_student_3/
- generated_from_trainer
model-index:
- name: ''
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# 

This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on the /WORKSPACE/DATA/HY/NOIZY_STUDENT_3/ - NA dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1827
- Wer: 0.2389
- Cer: 0.0427

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 8e-05
- train_batch_size: 16
- eval_batch_size: 64
- seed: 842
- gradient_accumulation_steps: 8
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.98) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- training_steps: 3200
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Wer    | Cer    |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|
| 4.0311        | 3.51  | 200  | 0.7943          | 0.8981 | 0.2374 |
| 1.4388        | 7.02  | 400  | 0.2546          | 0.3821 | 0.0658 |
| 1.0949        | 10.53 | 600  | 0.2201          | 0.3216 | 0.0573 |
| 1.0279        | 14.04 | 800  | 0.2250          | 0.3271 | 0.0583 |
| 0.9923        | 17.54 | 1000 | 0.2074          | 0.3111 | 0.0543 |
| 0.972         | 21.05 | 1200 | 0.2165          | 0.2955 | 0.0536 |
| 0.9587        | 24.56 | 1400 | 0.2064          | 0.3017 | 0.0535 |
| 0.9421        | 28.07 | 1600 | 0.2062          | 0.2884 | 0.0519 |
| 0.9189        | 31.58 | 1800 | 0.2014          | 0.2822 | 0.0507 |
| 0.8919        | 35.09 | 2000 | 0.1952          | 0.2689 | 0.0488 |
| 0.8615        | 38.6  | 2200 | 0.2020          | 0.2685 | 0.0480 |
| 0.834         | 42.11 | 2400 | 0.2001          | 0.2654 | 0.0467 |
| 0.8056        | 45.61 | 2600 | 0.1935          | 0.2498 | 0.0448 |
| 0.7888        | 49.12 | 2800 | 0.1892          | 0.2451 | 0.0446 |
| 0.761         | 52.63 | 3000 | 0.1884          | 0.2432 | 0.0441 |
| 0.742         | 56.14 | 3200 | 0.1827          | 0.2389 | 0.0427 |


### Framework versions

- Transformers 4.17.0.dev0
- Pytorch 1.10.2+cu102
- Datasets 1.18.2.dev0
- Tokenizers 0.11.0