|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""Helper for adding automatically tracked values to Tensorboard. |
|
|
|
Autosummary creates an identity op that internally keeps track of the input |
|
values and automatically shows up in TensorBoard. The reported value |
|
represents an average over input components. The average is accumulated |
|
constantly over time and flushed when save_summaries() is called. |
|
|
|
Notes: |
|
- The output tensor must be used as an input for something else in the |
|
graph. Otherwise, the autosummary op will not get executed, and the average |
|
value will not get accumulated. |
|
- It is perfectly fine to include autosummaries with the same name in |
|
several places throughout the graph, even if they are executed concurrently. |
|
- It is ok to also pass in a python scalar or numpy array. In this case, it |
|
is added to the average immediately. |
|
""" |
|
|
|
from collections import OrderedDict |
|
import numpy as np |
|
import tensorflow as tf |
|
from tensorboard import summary as summary_lib |
|
from tensorboard.plugins.custom_scalar import layout_pb2 |
|
|
|
from . import tfutil |
|
from .tfutil import TfExpression |
|
from .tfutil import TfExpressionEx |
|
|
|
|
|
|
|
enable_custom_scalars = False |
|
|
|
_dtype = tf.float64 |
|
_vars = OrderedDict() |
|
_immediate = OrderedDict() |
|
_finalized = False |
|
_merge_op = None |
|
|
|
|
|
def _create_var(name: str, value_expr: TfExpression) -> TfExpression: |
|
"""Internal helper for creating autosummary accumulators.""" |
|
assert not _finalized |
|
name_id = name.replace("/", "_") |
|
v = tf.cast(value_expr, _dtype) |
|
|
|
if v.shape.is_fully_defined(): |
|
size = np.prod(v.shape.as_list()) |
|
size_expr = tf.constant(size, dtype=_dtype) |
|
else: |
|
size = None |
|
size_expr = tf.reduce_prod(tf.cast(tf.shape(v), _dtype)) |
|
|
|
if size == 1: |
|
if v.shape.ndims != 0: |
|
v = tf.reshape(v, []) |
|
v = [size_expr, v, tf.square(v)] |
|
else: |
|
v = [size_expr, tf.reduce_sum(v), tf.reduce_sum(tf.square(v))] |
|
v = tf.cond(tf.is_finite(v[1]), lambda: tf.stack(v), lambda: tf.zeros(3, dtype=_dtype)) |
|
|
|
with tfutil.absolute_name_scope("Autosummary/" + name_id), tf.control_dependencies(None): |
|
var = tf.Variable(tf.zeros(3, dtype=_dtype), trainable=False) |
|
update_op = tf.cond(tf.is_variable_initialized(var), lambda: tf.assign_add(var, v), lambda: tf.assign(var, v)) |
|
|
|
if name in _vars: |
|
_vars[name].append(var) |
|
else: |
|
_vars[name] = [var] |
|
return update_op |
|
|
|
|
|
def autosummary(name: str, value: TfExpressionEx, passthru: TfExpressionEx = None, condition: TfExpressionEx = True) -> TfExpressionEx: |
|
"""Create a new autosummary. |
|
|
|
Args: |
|
name: Name to use in TensorBoard |
|
value: TensorFlow expression or python value to track |
|
passthru: Optionally return this TF node without modifications but tack an autosummary update side-effect to this node. |
|
|
|
Example use of the passthru mechanism: |
|
|
|
n = autosummary('l2loss', loss, passthru=n) |
|
|
|
This is a shorthand for the following code: |
|
|
|
with tf.control_dependencies([autosummary('l2loss', loss)]): |
|
n = tf.identity(n) |
|
""" |
|
tfutil.assert_tf_initialized() |
|
name_id = name.replace("/", "_") |
|
|
|
if tfutil.is_tf_expression(value): |
|
with tf.name_scope("summary_" + name_id), tf.device(value.device): |
|
condition = tf.convert_to_tensor(condition, name='condition') |
|
update_op = tf.cond(condition, lambda: tf.group(_create_var(name, value)), tf.no_op) |
|
with tf.control_dependencies([update_op]): |
|
return tf.identity(value if passthru is None else passthru) |
|
|
|
else: |
|
assert not tfutil.is_tf_expression(passthru) |
|
assert not tfutil.is_tf_expression(condition) |
|
if condition: |
|
if name not in _immediate: |
|
with tfutil.absolute_name_scope("Autosummary/" + name_id), tf.device(None), tf.control_dependencies(None): |
|
update_value = tf.placeholder(_dtype) |
|
update_op = _create_var(name, update_value) |
|
_immediate[name] = update_op, update_value |
|
update_op, update_value = _immediate[name] |
|
tfutil.run(update_op, {update_value: value}) |
|
return value if passthru is None else passthru |
|
|
|
|
|
def finalize_autosummaries() -> None: |
|
"""Create the necessary ops to include autosummaries in TensorBoard report. |
|
Note: This should be done only once per graph. |
|
""" |
|
global _finalized |
|
tfutil.assert_tf_initialized() |
|
|
|
if _finalized: |
|
return None |
|
|
|
_finalized = True |
|
tfutil.init_uninitialized_vars([var for vars_list in _vars.values() for var in vars_list]) |
|
|
|
|
|
with tf.device(None), tf.control_dependencies(None): |
|
for name, vars_list in _vars.items(): |
|
name_id = name.replace("/", "_") |
|
with tfutil.absolute_name_scope("Autosummary/" + name_id): |
|
moments = tf.add_n(vars_list) |
|
moments /= moments[0] |
|
with tf.control_dependencies([moments]): |
|
reset_ops = [tf.assign(var, tf.zeros(3, dtype=_dtype)) for var in vars_list] |
|
with tf.name_scope(None), tf.control_dependencies(reset_ops): |
|
mean = moments[1] |
|
std = tf.sqrt(moments[2] - tf.square(moments[1])) |
|
tf.summary.scalar(name, mean) |
|
if enable_custom_scalars: |
|
tf.summary.scalar("xCustomScalars/" + name + "/margin_lo", mean - std) |
|
tf.summary.scalar("xCustomScalars/" + name + "/margin_hi", mean + std) |
|
|
|
|
|
layout = None |
|
if enable_custom_scalars: |
|
cat_dict = OrderedDict() |
|
for series_name in sorted(_vars.keys()): |
|
p = series_name.split("/") |
|
cat = p[0] if len(p) >= 2 else "" |
|
chart = "/".join(p[1:-1]) if len(p) >= 3 else p[-1] |
|
if cat not in cat_dict: |
|
cat_dict[cat] = OrderedDict() |
|
if chart not in cat_dict[cat]: |
|
cat_dict[cat][chart] = [] |
|
cat_dict[cat][chart].append(series_name) |
|
categories = [] |
|
for cat_name, chart_dict in cat_dict.items(): |
|
charts = [] |
|
for chart_name, series_names in chart_dict.items(): |
|
series = [] |
|
for series_name in series_names: |
|
series.append(layout_pb2.MarginChartContent.Series( |
|
value=series_name, |
|
lower="xCustomScalars/" + series_name + "/margin_lo", |
|
upper="xCustomScalars/" + series_name + "/margin_hi")) |
|
margin = layout_pb2.MarginChartContent(series=series) |
|
charts.append(layout_pb2.Chart(title=chart_name, margin=margin)) |
|
categories.append(layout_pb2.Category(title=cat_name, chart=charts)) |
|
layout = summary_lib.custom_scalar_pb(layout_pb2.Layout(category=categories)) |
|
return layout |
|
|
|
def save_summaries(file_writer, global_step=None): |
|
"""Call FileWriter.add_summary() with all summaries in the default graph, |
|
automatically finalizing and merging them on the first call. |
|
""" |
|
global _merge_op |
|
tfutil.assert_tf_initialized() |
|
|
|
if _merge_op is None: |
|
layout = finalize_autosummaries() |
|
if layout is not None: |
|
file_writer.add_summary(layout) |
|
with tf.device(None), tf.control_dependencies(None): |
|
_merge_op = tf.summary.merge_all() |
|
|
|
file_writer.add_summary(_merge_op.eval(), global_step) |
|
|