|
"""Arabic Speech Corpus""" |
|
|
|
from __future__ import absolute_import, division, print_function |
|
|
|
import os |
|
|
|
import datasets |
|
|
|
|
|
_CITATION = """ |
|
""" |
|
|
|
_DESCRIPTION = """\ |
|
|
|
|
|
```python |
|
import soundfile as sf |
|
|
|
def map_to_array(batch): |
|
speech_array, _ = sf.read(batch["file"]) |
|
batch["speech"] = speech_array |
|
return batch |
|
|
|
dataset = dataset.map(map_to_array, remove_columns=["file"]) |
|
``` |
|
""" |
|
|
|
_URL = "mgb3.zip" |
|
corrupt_files = ['familyKids_02_first_12min.wav','sports_04_first_12min.wav', |
|
'cooking_05_first_12min.wav', 'moviesDrama_07_first_12min.wav','science_06_first_12min.wav', |
|
'comedy_09_first_12min.wav','cultural_08_first_12min.wav','familyKids_11_first_12min.wav', |
|
'science_10_first_12min.wav'] |
|
import soundfile as sf |
|
|
|
class EgyptianSpeechCorpusConfig(datasets.BuilderConfig): |
|
"""BuilderConfig for EgyptianSpeechCorpus.""" |
|
|
|
def __init__(self, **kwargs): |
|
""" |
|
Args: |
|
data_dir: `string`, the path to the folder containing the files in the |
|
downloaded .tar |
|
citation: `string`, citation for the data set |
|
url: `string`, url for information about the data set |
|
**kwargs: keyword arguments forwarded to super. |
|
""" |
|
super(EgyptianSpeechCorpusConfig, self).__init__(version=datasets.Version("2.1.0", ""), **kwargs) |
|
|
|
|
|
def map_to_array(batch): |
|
start, stop = batch['segment'].split('_') |
|
speech_array, _ = sf.read(batch["file"], start = start, stop = stop) |
|
batch["speech"] = speech_array |
|
return batch |
|
|
|
class EgyptionSpeechCorpus(datasets.GeneratorBasedBuilder): |
|
"""EgyptianSpeechCorpus dataset.""" |
|
|
|
BUILDER_CONFIGS = [ |
|
EgyptianSpeechCorpusConfig(name="clean", description="'Clean' speech."), |
|
] |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features( |
|
{ |
|
"file": datasets.Value("string"), |
|
"text": datasets.Value("string"), |
|
"segment": datasets.Value("string") |
|
} |
|
), |
|
supervised_keys=("file", "text"), |
|
homepage=_URL, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
self.archive_path = '/content/mgb3' |
|
return [ |
|
datasets.SplitGenerator(name="train", gen_kwargs={"archive_path": os.path.join(self.archive_path, "adapt")}), |
|
datasets.SplitGenerator(name="dev", gen_kwargs={"archive_path": os.path.join(self.archive_path, "dev")}), |
|
datasets.SplitGenerator(name="test", gen_kwargs={"archive_path": os.path.join(self.archive_path, "test")}), |
|
] |
|
|
|
def _generate_examples(self, archive_path): |
|
"""Generate examples from a Librispeech archive_path.""" |
|
text_dir = os.path.join(archive_path, "Alaa") |
|
wav_dir = os.path.join(self.archive_path, "wav") |
|
|
|
segments_file = os.path.join(text_dir, "text_noverlap") |
|
|
|
with open(segments_file, "r", encoding="utf-8") as f: |
|
for _id, line in enumerate(f): |
|
segment = line.split(' ')[0] |
|
text = ' '.join(line.split(' ')[1:]) |
|
wav_file = '_'.join(segment.split('_')[:4]) +'.wav' |
|
start, stop = segment.split('_')[4:6] |
|
wav_path = os.path.join(wav_dir, wav_file) |
|
if (wav_file in corrupt_files) or (wav_file not in os.listdir(wav_dir)): |
|
continue |
|
example = { |
|
"file": wav_path, |
|
"text": text, |
|
"segment":('_').join([start, stop]) |
|
} |
|
yield str(_id), example |
|
|
|
|