Crystalcareai commited on
Commit
ab9a718
·
verified ·
1 Parent(s): fd1b21e

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +45 -0
README.md ADDED
@@ -0,0 +1,45 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ base_model:
4
+ - Qwen/Qwen2.5-14B
5
+ ---
6
+
7
+ <div align="center">
8
+ <img src="https://i.ibb.co/pXD6Bcv/SW2-U-g-QQLSH1-ZAbxhs-Iu-A.webp" alt="Virtuoso-Small" style="border-radius: 10px; box-shadow: 0 4px 8px 0 rgba(0, 0, 0, 0.2), 0 6px 20px 0 rgba(0, 0, 0, 0.19); max-width: 100%; height: auto;">
9
+ </div>
10
+
11
+ # Virtuoso-Small
12
+
13
+ Virtuoso-Small is the debut public release of the Virtuoso series of models by Arcee.ai, designed to bring cutting-edge generative AI capabilities to organizations and developers in a compact, efficient form. With 14 billion parameters, Virtuoso-Small is an accessible entry point for high-quality instruction-following, complex reasoning, and business-oriented generative AI tasks. Its larger siblings, Virtuoso-Forte and Virtuoso-Prime, offer even greater capabilities and are available via API at [models.arcee.ai](https://models.arcee.ai).
14
+
15
+
16
+ ## Performance Benchmarks
17
+
18
+ | **Groups** | **Metric** | ↑ | **Value** | ± | **Stderr** |
19
+ |---------------------------|--------------------------|---|----------:|----|-----------:|
20
+ | **Leaderboard** | **Accuracy** | ↑ | 0.5194 | ± | 0.0046 |
21
+ | | Normalized Accuracy | ↑ | 0.5814 | ± | 0.0051 |
22
+ | | Exact Match | ↑ | 0.3006 | ± | 0.0117 |
23
+ | | Instruction-Level Loose Accuracy | ↑ | 0.8489 | ± | N/A |
24
+ | | Instruction-Level Strict Accuracy | ↑ | 0.8249 | ± | N/A |
25
+ | | Prompt-Level Loose Accuracy | ↑ | 0.7856 | ± | 0.0177 |
26
+ | | Prompt-Level Strict Accuracy | ↑ | 0.7523 | ± | 0.0186 |
27
+ | **Leaderboard-BBH** | Normalized Accuracy | ↑ | 0.6516 | ± | 0.0058 |
28
+ | **Leaderboard-GPQA** | Normalized Accuracy | ↑ | 0.3389 | ± | 0.0137 |
29
+ | **Leaderboard-Math-Hard** | Exact Match | ↑ | 0.3006 | ± | 0.0117 |
30
+ | **Leaderboard-MuSR** | Normalized Accuracy | ↑ | 0.4286 | ± | 0.0175 |
31
+
32
+ ---
33
+
34
+ ## Key Features
35
+
36
+ - **Compact and Efficient**: With 14 billion parameters, Virtuoso-Small provides a high-performance solution optimized for smaller hardware configurations without sacrificing quality.
37
+ - **Business-Oriented**: Tailored for use cases such as customer support, content creation, and technical assistance, Virtuoso-Small meets the demands of modern enterprises.
38
+ - **Scalable Ecosystem**: Part of the Virtuoso series, Virtuoso-Small is fully interoperable with its larger siblings, Forte and Prime, enabling seamless scaling as your needs grow.
39
+
40
+ ---
41
+
42
+ ## Deployment Options
43
+
44
+ Virtuoso-Small is available under the Apache-2.0 license and can be deployed locally or accessed through an API at [models.arcee.ai](https://models.arcee.ai). For larger-scale or more demanding applications, consider Virtuoso-Forte or Virtuoso-Prime.
45
+