ardi555 commited on
Commit
d318911
·
verified ·
1 Parent(s): 7deddf1

Push model using huggingface_hub.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,294 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - setfit
4
+ - sentence-transformers
5
+ - text-classification
6
+ - generated_from_setfit_trainer
7
+ widget:
8
+ - text: "Deputy Finance Ministers from the Group\nof 10 leading western industrialised\
9
+ \ countries met here to\ndiscuss the world debt crisis, trade imbalances and currency\n\
10
+ stability today following last month's Paris monetary accord,\nsources close to\
11
+ \ the talks said.\n The officials met at the offices of the International\n\
12
+ Monetary Fund (IMF) to discuss broad aspects of world monetary\npolicy in preparation\
13
+ \ for the IMF's interim committee meeting\nin Washington in April.\n The talks\
14
+ \ were the first high-level international review of\nthe monetary situation since\
15
+ \ the accord last month reached by\nthe U.S., West Germany, France, Britain, Japan\
16
+ \ and Canada to\nstabilise world currency markets at around present levels\nfollowing\
17
+ \ the 40 pct slide in the dollar since mid-1985.\n Other countries represented\
18
+ \ at today's talks were Italy,\nwhich refused to attend last month's meeting on\
19
+ \ the grounds\nthat it was being excluded from the real discussions, the\nNetherlands,\
20
+ \ Belgium and Switzerland.\n Many of the officials had met earlier today and\
21
+ \ yesterday\nwithin the framework of the Organisation for Economic\nCooperation\
22
+ \ and Development (OECD) to review the slow progress\nbeing made in cutting the\
23
+ \ record 170 billion dlr U.S. Trade\ndeficit and persuading West Germany and Japan\
24
+ \ to open their\neconomies to more foreign imports.\n Reuter\n"
25
+ - text: "Oper shr 69 cts vs 83 cts\n Oper net 35.9 mln vs 42.4 mln\n Revs 798.9\
26
+ \ mln vs 659.2 mln\n Avg shrs 52.0 mln vs 50.9 mln\n Nine mths\n Oper\
27
+ \ shr 2.38 dlrs vs 2.75 dlrs\n Oper net 123.3 mln vs 135.6 mln\n Revs 2.31\
28
+ \ billion vs 1.86 billion\n Avg shrs 51.8 mln vs 49.3 mln\n NOTE: Net excludes\
29
+ \ losses from discontinued operations of\nnil vs 16.1 mln dlrs in quarter and\
30
+ \ 227.5 mln dlrs vs 42.7 mln\ndlrs in nine mths.\n Quarter net includes gains\
31
+ \ from sale of aircraft of two mln\ndlrs vs 6,200,000 dlrs.\n Reuter\n"
32
+ - text: "The National Association of Wheat\nGrowers, NAWG, board of directors is scheduled\
33
+ \ to meet\nSecretary of State George Schultz and Undersecretary of State\nAllen\
34
+ \ Wallis to discuss the Department's current role in farm\ntrade policy, the association\
35
+ \ said.\n NAWG President Jim Miller said in a statement that the\norganization\
36
+ \ wanted to convey to Secretary Schultz the\nimportance that exports hold for\
37
+ \ U.S. agriculture and the\ndegree to which farmers are dependent upon favorable\
38
+ \ State\nDepartment trade policies to remain profitable.\n \"Foreign policy\
39
+ \ decisions of the U.S. State Department have\nin the past severely hampered our\
40
+ \ efforts to move our product\nto overseas markets,\" he said.\n Miller noted\
41
+ \ Secretary Schultz is scheduled to meet next\nmonth with representatives of the\
42
+ \ Soviet Union, and the NAWG\n\"wanted to be certain the secretary was aware of\
43
+ \ our concerns\nregarding the reopening of wheat trade with the Soviet Union.\"\
44
+ \n The annual spring NAWG board of directors meeting is held\nin Washington\
45
+ \ to allow grower-leaders from around the country\nto meet with their state congressional\
46
+ \ delegations and members\nof the executive branch.\n The purpose is to discuss\
47
+ \ the current situation for\nproducing and marketing wheat and help set the legislative\
48
+ \ and\nregulatory agenda for the coming year, the NAWG statement said.\n Reuter\n"
49
+ - text: "The Bank of France is likely to cut its\nmoney market intervention rate by\
50
+ \ up to a quarter point at the\nstart of next week. This follows a steady decline\
51
+ \ in the call\nmoney rate over the past 10 days and signals from the Finance\n\
52
+ Ministry that the time is ripe for a fall, dealers said.\n The call money rate\
53
+ \ peaked at just above nine pct ahead of\nthe meeting of finance ministers from\
54
+ \ the Group of Five\nindustrial countries and Canada on February 22, which restored\n\
55
+ considerable stability to foreign exchanges after several weeks\nof turbulence.\n\
56
+ \ The call money rate dropped to around 8-3/8 pct on February\n23, the day\
57
+ \ after the Paris accord, and then edged steadily\ndown to eight pct on February\
58
+ \ 27 and 7-3/4 pct on March 3,\nwhere it has now stabilised.\n Dealers said\
59
+ \ the Bank of France intervened to absorb\nliquidity to hold the rate at 7-3/4\
60
+ \ pct.\n While call money has dropped by well over a percentage\npoint, the\
61
+ \ Bank of France's money market intervention rate has\nremained unchanged since\
62
+ \ January 2, when it was raised to eight\npct from 7-1/4 pct in a bid to stop\
63
+ \ a franc slide.\n The seven-day repurchase rate has also been unchanged at\n\
64
+ 8-3/4 since it was raised by a half-point on January 5.\n The Bank of France\
65
+ \ has begun using the seven-day repurchase\nrate to set an upper indicator for\
66
+ \ money market rates, while\nusing the intervention rate to set the floor.\n \
67
+ \ Sources close to Finance Minister Edouard Balladur said\nthat he would be\
68
+ \ happy to see an interest rate cut, and dealers\nsaid any fall in the intervention\
69
+ \ rate was most likely to come\nwhen the Bank of France buys first category paper\
70
+ \ next Monday,\nalthough an earlier cut could not be excluded.\n A cut in the\
71
+ \ seven-day repurchase rate could come as early\nas tomorrow morning, banking\
72
+ \ sources said.\n They said recent high interest rates have encouraged an\n\
73
+ acceleration in foreign funds returning to France, discouraging\nthe authorities\
74
+ \ from making a hasty rate cut. But they also\npointed out that money supply is\
75
+ \ broadly back on target, giving\nscope for a small fall in rates.\n M-3 money\
76
+ \ supply, the government's key aggregate, finished\n1986 within the government's\
77
+ \ three to five pct growth target,\nrising 4.6 pct compared with seven pct in\
78
+ \ 1985.\n REUTER\n"
79
+ - text: "The French 1986 current account balance\nof payments surplus has been revised\
80
+ \ slightly upwards to 25.8\nbillion francs from the 25.4 billion franc figure\
81
+ \ announced\nlast month, the Finance Ministry said.\n This compares with a\
82
+ \ 1.5 billion deficit in 1985, and while\nit is the first surplus since 1979,\
83
+ \ is substantially lower than\nthe 50 billion surplus forecast by the previous\
84
+ \ socialist\ngovernment before they lost office in March last year.\n Net long-term\
85
+ \ capital outflows rose sharply to 70.5 billion\nfrancs last year from 8.8 billion\
86
+ \ in 1985, largely due to a\nmajor program of foreign debt repayment, the ministry\
87
+ \ said.\n In the fourth quarter alone the unadjusted surplus rose to\n14.1\
88
+ \ billion francs from 6.6 billion the previous quarter, but\nthe adjusted surplus\
89
+ \ fell to 7.4 billion from 9.1 billion.\n Fourth quarter medium and long-term\
90
+ \ foreign debt repayments\nexceeded new credits by 11 billion francs.\n REUTER\n"
91
+ metrics:
92
+ - accuracy
93
+ pipeline_tag: text-classification
94
+ library_name: setfit
95
+ inference: false
96
+ base_model: sentence-transformers/paraphrase-mpnet-base-v2
97
+ model-index:
98
+ - name: SetFit with sentence-transformers/paraphrase-mpnet-base-v2
99
+ results:
100
+ - task:
101
+ type: text-classification
102
+ name: Text Classification
103
+ dataset:
104
+ name: Unknown
105
+ type: unknown
106
+ split: test
107
+ metrics:
108
+ - type: accuracy
109
+ value: 0.785234899328859
110
+ name: Accuracy
111
+ ---
112
+
113
+ # SetFit with sentence-transformers/paraphrase-mpnet-base-v2
114
+
115
+ This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2) as the Sentence Transformer embedding model. A OneVsRestClassifier instance is used for classification.
116
+
117
+ The model has been trained using an efficient few-shot learning technique that involves:
118
+
119
+ 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
120
+ 2. Training a classification head with features from the fine-tuned Sentence Transformer.
121
+
122
+ ## Model Details
123
+
124
+ ### Model Description
125
+ - **Model Type:** SetFit
126
+ - **Sentence Transformer body:** [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2)
127
+ - **Classification head:** a OneVsRestClassifier instance
128
+ - **Maximum Sequence Length:** 512 tokens
129
+ <!-- - **Number of Classes:** Unknown -->
130
+ <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
131
+ <!-- - **Language:** Unknown -->
132
+ <!-- - **License:** Unknown -->
133
+
134
+ ### Model Sources
135
+
136
+ - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
137
+ - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
138
+ - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
139
+
140
+ ## Evaluation
141
+
142
+ ### Metrics
143
+ | Label | Accuracy |
144
+ |:--------|:---------|
145
+ | **all** | 0.7852 |
146
+
147
+ ## Uses
148
+
149
+ ### Direct Use for Inference
150
+
151
+ First install the SetFit library:
152
+
153
+ ```bash
154
+ pip install setfit
155
+ ```
156
+
157
+ Then you can load this model and run inference.
158
+
159
+ ```python
160
+ from setfit import SetFitModel
161
+
162
+ # Download from the 🤗 Hub
163
+ model = SetFitModel.from_pretrained("ardi555/setfit_reuters21578_reducedto15")
164
+ # Run inference
165
+ preds = model("Oper shr 69 cts vs 83 cts
166
+ Oper net 35.9 mln vs 42.4 mln
167
+ Revs 798.9 mln vs 659.2 mln
168
+ Avg shrs 52.0 mln vs 50.9 mln
169
+ Nine mths
170
+ Oper shr 2.38 dlrs vs 2.75 dlrs
171
+ Oper net 123.3 mln vs 135.6 mln
172
+ Revs 2.31 billion vs 1.86 billion
173
+ Avg shrs 51.8 mln vs 49.3 mln
174
+ NOTE: Net excludes losses from discontinued operations of
175
+ nil vs 16.1 mln dlrs in quarter and 227.5 mln dlrs vs 42.7 mln
176
+ dlrs in nine mths.
177
+ Quarter net includes gains from sale of aircraft of two mln
178
+ dlrs vs 6,200,000 dlrs.
179
+ Reuter
180
+ ")
181
+ ```
182
+
183
+ <!--
184
+ ### Downstream Use
185
+
186
+ *List how someone could finetune this model on their own dataset.*
187
+ -->
188
+
189
+ <!--
190
+ ### Out-of-Scope Use
191
+
192
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
193
+ -->
194
+
195
+ <!--
196
+ ## Bias, Risks and Limitations
197
+
198
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
199
+ -->
200
+
201
+ <!--
202
+ ### Recommendations
203
+
204
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
205
+ -->
206
+
207
+ ## Training Details
208
+
209
+ ### Training Set Metrics
210
+ | Training set | Min | Median | Max |
211
+ |:-------------|:----|:---------|:----|
212
+ | Word count | 1 | 181.1067 | 788 |
213
+
214
+ ### Training Hyperparameters
215
+ - batch_size: (8, 8)
216
+ - num_epochs: (1, 1)
217
+ - max_steps: -1
218
+ - sampling_strategy: oversampling
219
+ - num_iterations: 20
220
+ - body_learning_rate: (2e-05, 2e-05)
221
+ - head_learning_rate: 2e-05
222
+ - loss: CosineSimilarityLoss
223
+ - distance_metric: cosine_distance
224
+ - margin: 0.25
225
+ - end_to_end: False
226
+ - use_amp: False
227
+ - warmup_proportion: 0.1
228
+ - l2_weight: 0.01
229
+ - seed: 42
230
+ - eval_max_steps: -1
231
+ - load_best_model_at_end: False
232
+
233
+ ### Training Results
234
+ | Epoch | Step | Training Loss | Validation Loss |
235
+ |:------:|:----:|:-------------:|:---------------:|
236
+ | 0.0013 | 1 | 0.4971 | - |
237
+ | 0.0667 | 50 | 0.1826 | - |
238
+ | 0.1333 | 100 | 0.1223 | - |
239
+ | 0.2 | 150 | 0.0699 | - |
240
+ | 0.2667 | 200 | 0.0712 | - |
241
+ | 0.3333 | 250 | 0.0646 | - |
242
+ | 0.4 | 300 | 0.055 | - |
243
+ | 0.4667 | 350 | 0.0611 | - |
244
+ | 0.5333 | 400 | 0.053 | - |
245
+ | 0.6 | 450 | 0.0555 | - |
246
+ | 0.6667 | 500 | 0.0475 | - |
247
+ | 0.7333 | 550 | 0.0716 | - |
248
+ | 0.8 | 600 | 0.0587 | - |
249
+ | 0.8667 | 650 | 0.0571 | - |
250
+ | 0.9333 | 700 | 0.0436 | - |
251
+ | 1.0 | 750 | 0.0505 | - |
252
+
253
+ ### Framework Versions
254
+ - Python: 3.10.12
255
+ - SetFit: 1.1.0
256
+ - Sentence Transformers: 3.2.1
257
+ - Transformers: 4.42.2
258
+ - PyTorch: 2.5.1+cu121
259
+ - Datasets: 3.1.0
260
+ - Tokenizers: 0.19.1
261
+
262
+ ## Citation
263
+
264
+ ### BibTeX
265
+ ```bibtex
266
+ @article{https://doi.org/10.48550/arxiv.2209.11055,
267
+ doi = {10.48550/ARXIV.2209.11055},
268
+ url = {https://arxiv.org/abs/2209.11055},
269
+ author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
270
+ keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
271
+ title = {Efficient Few-Shot Learning Without Prompts},
272
+ publisher = {arXiv},
273
+ year = {2022},
274
+ copyright = {Creative Commons Attribution 4.0 International}
275
+ }
276
+ ```
277
+
278
+ <!--
279
+ ## Glossary
280
+
281
+ *Clearly define terms in order to be accessible across audiences.*
282
+ -->
283
+
284
+ <!--
285
+ ## Model Card Authors
286
+
287
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
288
+ -->
289
+
290
+ <!--
291
+ ## Model Card Contact
292
+
293
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
294
+ -->
config.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "sentence-transformers/paraphrase-mpnet-base-v2",
3
+ "architectures": [
4
+ "MPNetModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "eos_token_id": 2,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 768,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 3072,
14
+ "layer_norm_eps": 1e-05,
15
+ "max_position_embeddings": 514,
16
+ "model_type": "mpnet",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 12,
19
+ "pad_token_id": 1,
20
+ "relative_attention_num_buckets": 32,
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.42.2",
23
+ "vocab_size": 30527
24
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.2.1",
4
+ "transformers": "4.42.2",
5
+ "pytorch": "2.5.1+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
config_setfit.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "labels": null,
3
+ "normalize_embeddings": false
4
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7283c2c4adf958606810ae90f960e1fa6955f7b7f8ed21ac020057965ead9277
3
+ size 437967672
model_head.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:abca1b11332474de71449f111ac1e43956fbe4748fa07db9fd91a701d9ad7fd8
3
+ size 98212
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "[UNK]",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,59 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "104": {
28
+ "content": "[UNK]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "30526": {
36
+ "content": "<mask>",
37
+ "lstrip": true,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "<s>",
45
+ "clean_up_tokenization_spaces": true,
46
+ "cls_token": "<s>",
47
+ "do_basic_tokenize": true,
48
+ "do_lower_case": true,
49
+ "eos_token": "</s>",
50
+ "mask_token": "<mask>",
51
+ "model_max_length": 512,
52
+ "never_split": null,
53
+ "pad_token": "<pad>",
54
+ "sep_token": "</s>",
55
+ "strip_accents": null,
56
+ "tokenize_chinese_chars": true,
57
+ "tokenizer_class": "MPNetTokenizer",
58
+ "unk_token": "[UNK]"
59
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff