File size: 7,819 Bytes
8d209eb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
# https://colab.research.google.com/drive/1NCoaTUx1ntjwO1ZgdvM0tlPFehBTBp7t?usp=sharing#scrollTo=J8E8pxJ9hgZS
import os 
import argparse
import pickle 
from tqdm import tqdm 

import torch
from transformers import Wav2Vec2CTCTokenizer, Wav2Vec2FeatureExtractor, Wav2Vec2Processor, Wav2Vec2ForCTC
from transformers import TrainingArguments, Trainer
from datasets import load_dataset, load_metric, Dataset

from dataclasses import dataclass, field
from typing import Any, Dict, List, Optional, Union
import pandas as pd
import numpy as np 

if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    # parser.add_argument("-v",'--vocab',default='vocab.json')
    parser.add_argument("-d",'--data',default='bin')
    parser.add_argument("-m",'--model',default="facebook/wav2vec2-large-xlsr-53")
    parser.add_argument("-o",'--outdir',default="outdir")
    parser.add_argument("-b",'--batch_size',type=int,default=8)
    parser.add_argument("-e",'--epoch',type=int,default=10)
    args = parser.parse_args()

    tokenizer = Wav2Vec2CTCTokenizer(os.path.join(args.data,'vocab.json'), unk_token="[UNK]", pad_token="[PAD]", word_delimiter_token="|")
    feature_extractor = Wav2Vec2FeatureExtractor(feature_size=1, sampling_rate=16000, padding_value=0.0, do_normalize=True, return_attention_mask=False)
    processor = Wav2Vec2Processor(feature_extractor=feature_extractor, tokenizer=tokenizer)

    def prepare_dataset(batch):
        # check that all files have the correct sampling rate
        assert (
            len(set(batch["sampling_rate"])) == 1
        ), f"Make sure all inputs have the same sampling rate of {processor.feature_extractor.sampling_rate}."

        batch["input_values"] = processor(batch["speech"], sampling_rate=batch["sampling_rate"][0]).input_values

        with processor.as_target_processor():
            batch["labels"] = processor(batch["target_text"]).input_ids
        return batch

    train = []
    valid = []

    for fn in os.listdir(args.data):
        print('loading ',os.path.join(args.data,fn))
        with open (os.path.join(args.data,fn), 'rb') as fp:
            if "train" in fn:
                train += pickle.load(fp)
            if "valid" in fn:
                valid += pickle.load(fp)
        
    train = Dataset.from_pandas(pd.DataFrame(train))
    valid = Dataset.from_pandas(pd.DataFrame(valid))

    print('train size',train.shape)
    print('valid size',valid.shape)

    print('preparing train data with vocab mapping')
    train = train.map(prepare_dataset, batch_size=8, num_proc=1, batched=True)

    print('preparing valid data with vocab mapping')
    valid = valid.map(prepare_dataset, batch_size=8, num_proc=1, batched=True)

    @dataclass
    class DataCollatorCTCWithPadding:
        """
        Data collator that will dynamically pad the inputs received.
        Args:
            processor (:class:`~transformers.Wav2Vec2Processor`)
                The processor used for proccessing the data.
            padding (:obj:`bool`, :obj:`str` or :class:`~transformers.tokenization_utils_base.PaddingStrategy`, `optional`, defaults to :obj:`True`):
                Select a strategy to pad the returned sequences (according to the model's padding side and padding index)
                among:
                * :obj:`True` or :obj:`'longest'`: Pad to the longest sequence in the batch (or no padding if only a single
                sequence if provided).
                * :obj:`'max_length'`: Pad to a maximum length specified with the argument :obj:`max_length` or to the
                maximum acceptable input length for the model if that argument is not provided.
                * :obj:`False` or :obj:`'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of
                different lengths).
            max_length (:obj:`int`, `optional`):
                Maximum length of the ``input_values`` of the returned list and optionally padding length (see above).
            max_length_labels (:obj:`int`, `optional`):
                Maximum length of the ``labels`` returned list and optionally padding length (see above).
            pad_to_multiple_of (:obj:`int`, `optional`):
                If set will pad the sequence to a multiple of the provided value.
                This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability >=
                7.5 (Volta).
        """

        processor: Wav2Vec2Processor
        padding: Union[bool, str] = True
        max_length: Optional[int] = None
        max_length_labels: Optional[int] = None
        pad_to_multiple_of: Optional[int] = None
        pad_to_multiple_of_labels: Optional[int] = None

        def __call__(self, features: List[Dict[str, Union[List[int], torch.Tensor]]]) -> Dict[str, torch.Tensor]:
            # split inputs and labels since they have to be of different lenghts and need
            # different padding methods
            input_features = [{"input_values": feature["input_values"]} for feature in features]
            label_features = [{"input_ids": feature["labels"]} for feature in features]

            batch = self.processor.pad(
                input_features,
                padding=self.padding,
                max_length=self.max_length,
                pad_to_multiple_of=self.pad_to_multiple_of,
                return_tensors="pt",
            )
            with self.processor.as_target_processor():
                labels_batch = self.processor.pad(
                    label_features,
                    padding=self.padding,
                    max_length=self.max_length_labels,
                    pad_to_multiple_of=self.pad_to_multiple_of_labels,
                    return_tensors="pt",
                )

            # replace padding with -100 to ignore loss correctly
            labels = labels_batch["input_ids"].masked_fill(labels_batch.attention_mask.ne(1), -100)

            batch["labels"] = labels

            return batch

    def compute_metrics(pred):
        pred_logits = pred.predictions
        pred_ids = np.argmax(pred_logits, axis=-1)

        pred.label_ids[pred.label_ids == -100] = processor.tokenizer.pad_token_id

        pred_str = processor.batch_decode(pred_ids)
        # we do not want to group tokens when computing the metrics
        label_str = processor.batch_decode(pred.label_ids, group_tokens=False)

        wer = wer_metric.compute(predictions=pred_str, references=label_str)

        return {"wer": wer}

    data_collator = DataCollatorCTCWithPadding(processor=processor, padding=True)
    wer_metric = load_metric("wer")

    print('loading pretrained model')

    model = Wav2Vec2ForCTC.from_pretrained(
        args.model, 
        attention_dropout=0.1,
        hidden_dropout=0.1,
        feat_proj_dropout=0.0,
        mask_time_prob=0.05,
        layerdrop=0.1,
        gradient_checkpointing=True, 
        ctc_loss_reduction="mean", 
        pad_token_id=processor.tokenizer.pad_token_id,
        vocab_size=len(processor.tokenizer)
    )

    model.freeze_feature_extractor()

    training_args = TrainingArguments(
    output_dir=args.outdir,
    group_by_length=True,
    per_device_train_batch_size=args.batch_size,
    gradient_accumulation_steps=2,
    evaluation_strategy="steps",
    num_train_epochs=args.epoch,
    fp16=True,
    save_steps=400,
    eval_steps=400,
    logging_steps=400,
    learning_rate=3e-4,
    warmup_steps=500,
    save_total_limit=2,
    )

    trainer = Trainer(
        model=model,
        data_collator=data_collator,
        args=training_args,
        compute_metrics=compute_metrics,
        train_dataset=train,
        eval_dataset=valid,
        tokenizer=processor.feature_extractor,
    )

    print("starting training ...")
    trainer.train()