arimboux commited on
Commit
b7b315b
1 Parent(s): 9a58ccf

first model

Browse files
.gitattributes CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
28
+ *.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - metrics:
12
+ - type: mean_reward
13
+ value: 201.35 +/- 37.61
14
+ name: mean_reward
15
+ task:
16
+ type: reinforcement-learning
17
+ name: reinforcement-learning
18
+ dataset:
19
+ name: LunarLander-v2
20
+ type: LunarLander-v2
21
+ ---
22
+
23
+ # **PPO** Agent playing **LunarLander-v2**
24
+ This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
25
+
26
+ ## Usage (with Stable-baselines3)
27
+ TODO: Add your code
28
+
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f8312ce5320>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f8312ce53b0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f8312ce5440>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f8312ce54d0>", "_build": "<function ActorCriticPolicy._build at 0x7f8312ce5560>", "forward": "<function ActorCriticPolicy.forward at 0x7f8312ce55f0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f8312ce5680>", "_predict": "<function ActorCriticPolicy._predict at 0x7f8312ce5710>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f8312ce57a0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f8312ce5830>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f8312ce58c0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f8312d39390>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 507904, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1652016921.887356, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAE3bR73D0XW6FQAQuoleNTZSO+e5iK4mOQAAgD8AAIA/AHCFuuQpoT86N7I73Y8lv3a6vb1I4t09AAAAAAAAAAAN6v89exSoN9LEgTqvKfg410VSPGMXprkAAIA/AACAP2ZupbtxBTE62zV0Ol+iNTxvHta7H94YvQAAgD8AAAAAjRPEPWIZiD/+VaU+/2gbv0gzwz2v+z0+AAAAAAAAAAAavrG9uBaxueB09Lg6J9g0jYM9O5wrETgAAAAAAACAP7Py1T0U8KS6TJxCOwCY2bOSKsE6gsdfugAAgD8AAIA/c5J+PtI8+jzxho86cUBgOb1giT42+9i5AACAPwAAgD+axf48bKzYu91iKjxfD9k7mXhXPV3rxbwAAIA/AACAP1pFpD32ZFy6ZtAHPB+xCTZhPYu7owALNQAAgD8AAIA/s9AePfYkALrVptS6aZkotkLzFDplv/k5AACAPwAAgD/zHpU+7oCMPwFGAD/J4CC/bNGQPj6dBT4AAAAAAAAAAICXdD171oS6PY3zO0QwTTx4Noq5qgc2vQAAgD8AAIA/AD+6vI8uM7orGPI6c9a7tZwmAzqcXAy6AACAPwAAgD/mBtk97Bnfuf4UULtm3K+1m7RGuUBKdToAAIA/AAAAAG1SPb6RYko+yG95Pv2Blb7VyHg9iNQlvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVchAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIMQqCx7fXMUCUhpRSlIwBbJRLqIwBdJRHQH8O2PLgXM11fZQoaAZoCWgPQwiughjo2lf9v5SGlFKUaBVLoGgWR0B/Es0BOpKjdX2UKGgGaAloD0MIUtFY+ztrY0CUhpRSlGgVTegDaBZHQH81XdKujh11fZQoaAZoCWgPQwjqswOuKw1hQJSGlFKUaBVN6ANoFkdAfzcytFKChHV9lChoBmgJaA9DCGeasP3kr2TAlIaUUpRoFU1iAmgWR0B/OUka/ATJdX2UKGgGaAloD0MIVp+rrVg1Z0CUhpRSlGgVTegDaBZHQH85OkP+XJJ1fZQoaAZoCWgPQwgvFLAdjFw7QJSGlFKUaBVLpGgWR0B/PVkGzKLbdX2UKGgGaAloD0MIJCao4VsDUUCUhpRSlGgVTegDaBZHQH/CH2M85jp1fZQoaAZoCWgPQwjNkCqK1zVsQJSGlFKUaBVNtQFoFkdAf8ZTefqX4XV9lChoBmgJaA9DCNSa5h2nHD5AlIaUUpRoFUuUaBZHQH/nFwHZ9NN1fZQoaAZoCWgPQwizsn3IWydfQJSGlFKUaBVN6ANoFkdAgBTNp/PPcHV9lChoBmgJaA9DCOEnDqDfdF1AlIaUUpRoFU3oA2gWR0CAFzKbKA8TdX2UKGgGaAloD0MIvASnPpAKWUCUhpRSlGgVTegDaBZHQIAaQcghbGF1fZQoaAZoCWgPQwhYjpCBPIc+QJSGlFKUaBVLh2gWR0CAKdbfP5YYdX2UKGgGaAloD0MIjV4NUJq4ZECUhpRSlGgVTegDaBZHQIAz2oNutOp1fZQoaAZoCWgPQwj9SXzuBBdEQJSGlFKUaBVN6ANoFkdAgD4sK1G9YnV9lChoBmgJaA9DCDXTvU5qBmJAlIaUUpRoFU3oA2gWR0CAPxG7z06HdX2UKGgGaAloD0MIa/EpAMbjLUCUhpRSlGgVS65oFkdAgEW/4yoGZHV9lChoBmgJaA9DCLPTD+oiRWRAlIaUUpRoFU3oA2gWR0CASJQpF1B/dX2UKGgGaAloD0MIfjmzXaGwWkCUhpRSlGgVTegDaBZHQIBL/gvUSZl1fZQoaAZoCWgPQwj2Yign2vhbQJSGlFKUaBVN6ANoFkdAgEzkJ8fFJnV9lChoBmgJaA9DCEK1wYnoAzTAlIaUUpRoFUucaBZHQIBT0DIRywR1fZQoaAZoCWgPQwisOqsF9rZhQJSGlFKUaBVN6ANoFkdAgGAtw71ZknV9lChoBmgJaA9DCEJcOXvnvGJAlIaUUpRoFU3oA2gWR0CAYRKyOaOQdX2UKGgGaAloD0MIH0q05PERWkCUhpRSlGgVTegDaBZHQIBiMBGQSzx1fZQoaAZoCWgPQwgCgc6kTVxkQJSGlFKUaBVN6ANoFkdAgGItJFspHHV9lChoBmgJaA9DCPvNxHQh0GJAlIaUUpRoFU3oA2gWR0CAZF7Kq4pddX2UKGgGaAloD0MI422l12Z/WkCUhpRSlGgVTegDaBZHQICo+qo60Y11fZQoaAZoCWgPQwiK52wBoUVCQJSGlFKUaBVLnWgWR0CAqXwl0HQhdX2UKGgGaAloD0MI91rQe2O0UECUhpRSlGgVTegDaBZHQIC5qCUX5311fZQoaAZoCWgPQwh9l1KXjGPiP5SGlFKUaBVLvGgWR0CAwaUiY9gXdX2UKGgGaAloD0MI76mc9pSBXUCUhpRSlGgVTegDaBZHQIDbL0HyEtd1fZQoaAZoCWgPQwjEswQZgSRkQJSGlFKUaBVN6ANoFkdAgN6BbnoxH3V9lChoBmgJaA9DCLuYZrrXYGNAlIaUUpRoFU3oA2gWR0CA+KMuvlltdX2UKGgGaAloD0MIbk4lA8DqYUCUhpRSlGgVTegDaBZHQIEEfwb2lEZ1fZQoaAZoCWgPQwhKDW0ANrw2wJSGlFKUaBVL92gWR0CBB51DjR2KdX2UKGgGaAloD0MIbQIMy5/jXECUhpRSlGgVTegDaBZHQIEMDUPQOWl1fZQoaAZoCWgPQwgMVpxqLX9eQJSGlFKUaBVN6ANoFkdAgQ8WXC0ngHV9lChoBmgJaA9DCB767laWtVxAlIaUUpRoFU3oA2gWR0CBErArxy4ndX2UKGgGaAloD0MI/tXjvtVAYkCUhpRSlGgVTegDaBZHQIETibvw3Hd1fZQoaAZoCWgPQwh4QURqWiBgQJSGlFKUaBVN6ANoFkdAgRsAz544ZXV9lChoBmgJaA9DCGkc6ndhdWFAlIaUUpRoFU3oA2gWR0CBJ5LW7OE/dX2UKGgGaAloD0MImfIhqJp5ZECUhpRSlGgVTegDaBZHQIEouB4D9wZ1fZQoaAZoCWgPQwh3oblOIzlgQJSGlFKUaBVN6ANoFkdAgSi5xJd0JXV9lChoBmgJaA9DCNrGn6hsRD1AlIaUUpRoFUvPaBZHQIEq0a6z3RJ1fZQoaAZoCWgPQwgZ6NoX0AhhQJSGlFKUaBVN6ANoFkdAgStOearmyXV9lChoBmgJaA9DCJSilXuBu11AlIaUUpRoFU3oA2gWR0CBcVP8hs68dX2UKGgGaAloD0MIVHO5wVC7MkCUhpRSlGgVS41oFkdAgXP/io86m3V9lChoBmgJaA9DCJGYoIZvHWNAlIaUUpRoFU3oA2gWR0CBgibzbvgFdX2UKGgGaAloD0MIGcizy7cPW0CUhpRSlGgVTegDaBZHQIGKdvIfbK11fZQoaAZoCWgPQwh7ZkmAGqFiQJSGlFKUaBVNfwNoFkdAgZN3L/0dzXV9lChoBmgJaA9DCGITmbnAaWFAlIaUUpRoFU3oA2gWR0CBv/aC+UQkdX2UKGgGaAloD0MIs0XSbnSiZECUhpRSlGgVTegDaBZHQIHLiO/+Kj11fZQoaAZoCWgPQwj0/dR46aBNQJSGlFKUaBVN6ANoFkdAgc6J4bCJoHV9lChoBmgJaA9DCD3S4LY2K2hAlIaUUpRoFU3oA2gWR0CB0ri8WbgCdX2UKGgGaAloD0MIggLv5NOKYECUhpRSlGgVTegDaBZHQIHY/u7YkE91fZQoaAZoCWgPQwjOHJJaKKtaQJSGlFKUaBVN6ANoFkdAgdnfpUxVQ3V9lChoBmgJaA9DCDvhJTj1fFdAlIaUUpRoFU3oA2gWR0CB4UP6sQumdX2UKGgGaAloD0MInaBNDp9MLUCUhpRSlGgVS7xoFkdAgeY4TTOPenV9lChoBmgJaA9DCLXC9L0GXGFAlIaUUpRoFU3oA2gWR0CB7Yprk8zRdX2UKGgGaAloD0MI9l/nps1vZECUhpRSlGgVTegDaBZHQIHukc81XNl1fZQoaAZoCWgPQwgIyQImcBFAQJSGlFKUaBVN6ANoFkdAge6LRjSXt3V9lChoBmgJaA9DCBB1H4DUz1ZAlIaUUpRoFU3oA2gWR0CB8ISlnAZbdX2UKGgGaAloD0MI3xrYKsG1X0CUhpRSlGgVTegDaBZHQII2UJjUd7x1fZQoaAZoCWgPQwgQsFbtmnNQQJSGlFKUaBVN6ANoFkdAgjjb2lEZznV9lChoBmgJaA9DCBdH5SbqAmBAlIaUUpRoFU3oA2gWR0CCRfReC04SdX2UKGgGaAloD0MI+tUcIBiNYUCUhpRSlGgVTegDaBZHQIJNsYQ8OkN1fZQoaAZoCWgPQwgniLoPwOxhQJSGlFKUaBVN6ANoFkdAglZYMWoFV3V9lChoBmgJaA9DCN/CuvHugGFAlIaUUpRoFU3oA2gWR0CCgO2WIGhVdX2UKGgGaAloD0MI7RFqhtSIYECUhpRSlGgVTegDaBZHQIKO1cbBGhF1fZQoaAZoCWgPQwjIYTB/BXRjQJSGlFKUaBVN6ANoFkdAgpLq7Ackt3V9lChoBmgJaA9DCHU5JSCmp2FAlIaUUpRoFU3oA2gWR0CCmZgrpaA4dX2UKGgGaAloD0MIObNdoY/7ZUCUhpRSlGgVTegDaBZHQIKaajk+5e91fZQoaAZoCWgPQwjl7nN8NGtgQJSGlFKUaBVN6ANoFkdAgqHsnRb8nHV9lChoBmgJaA9DCJxqLczCOWZAlIaUUpRoFU3oA2gWR0CCpr3qzJIUdX2UKGgGaAloD0MI8j/5u3dYWECUhpRSlGgVTegDaBZHQIKuCTQmeDp1fZQoaAZoCWgPQwholC79y2NhQJSGlFKUaBVN6ANoFkdAgq8atLcsUnV9lChoBmgJaA9DCLN9yFsuyWNAlIaUUpRoFU3oA2gWR0CCrxUvwmVrdX2UKGgGaAloD0MI9RH4w8+5ZUCUhpRSlGgVTegDaBZHQIKxDijtXxR1fZQoaAZoCWgPQwj/Bu3Vx91CQJSGlFKUaBVLimgWR0CCvxSc9W6tdX2UKGgGaAloD0MIw0ZZv5k3WECUhpRSlGgVTegDaBZHQIK/nSncclx1fZQoaAZoCWgPQwgna9RDNA9mQJSGlFKUaBVN6ANoFkdAgsIYZdfLLnV9lChoBmgJaA9DCLhaJy7HmF5AlIaUUpRoFU3oA2gWR0CDBek3S8aodX2UKGgGaAloD0MIRluVRPYrYkCUhpRSlGgVTegDaBZHQIMNKxX4j8l1fZQoaAZoCWgPQwjWcJF7ujRhQJSGlFKUaBVN6ANoFkdAgxW8oYvWYnV9lChoBmgJaA9DCLXC9L2GjkdAlIaUUpRoFUvraBZHQIMks1O0svt1fZQoaAZoCWgPQwic+GpH8UNgQJSGlFKUaBVN6ANoFkdAgz6AGSpzcXV9lChoBmgJaA9DCHpvDAFAPGNAlIaUUpRoFU3oA2gWR0CDS4ZBsyi3dX2UKGgGaAloD0MIlG3gDlR5Y0CUhpRSlGgVTegDaBZHQINPbtb9qDd1fZQoaAZoCWgPQwhuMT83tDxjQJSGlFKUaBVN6ANoFkdAg1Vmm+Cbt3V9lChoBmgJaA9DCBe6EoHqOl9AlIaUUpRoFU3oA2gWR0CDVisKb8WLdX2UKGgGaAloD0MIo7CLogeBY0CUhpRSlGgVTegDaBZHQINc633Hq/x1fZQoaAZoCWgPQwiFzmvsEtJdQJSGlFKUaBVN6ANoFkdAg2F+bVjI73V9lChoBmgJaA9DCBYYsrrVuWdAlIaUUpRoFU2TAmgWR0CDZ3VJ+UhWdX2UKGgGaAloD0MIXmQCfo2qWUCUhpRSlGgVTegDaBZHQINoRwfhddF1fZQoaAZoCWgPQwi3s688SEpkQJSGlFKUaBVN6ANoFkdAg2k+LFXJYHV9lChoBmgJaA9DCBQ+WwcH2l1AlIaUUpRoFU3oA2gWR0CDaxb5dnkDdX2UKGgGaAloD0MIio7k8p+dYECUhpRSlGgVTegDaBZHQIN5WDHwPRR1fZQoaAZoCWgPQwh8nGnCdidjQJSGlFKUaBVN6ANoFkdAg3nmvfTCtXV9lChoBmgJaA9DCLO1vkjox2BAlIaUUpRoFU3oA2gWR0CDfG3Kji4sdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 124, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ce6c54242b25defaccd49c74bfefe452ed7f1e4f7fd66771ac6403c63b7c6c7e
3
+ size 144027
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.5.0
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f8312ce5320>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f8312ce53b0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f8312ce5440>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f8312ce54d0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f8312ce5560>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f8312ce55f0>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f8312ce5680>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f8312ce5710>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f8312ce57a0>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f8312ce5830>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f8312ce58c0>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7f8312d39390>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 8
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
+ "n": 4,
40
+ "_shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": null
43
+ },
44
+ "n_envs": 16,
45
+ "num_timesteps": 507904,
46
+ "_total_timesteps": 500000,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": null,
49
+ "action_noise": null,
50
+ "start_time": 1652016921.887356,
51
+ "learning_rate": 0.0003,
52
+ "tensorboard_log": null,
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
56
+ },
57
+ "_last_obs": {
58
+ ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAE3bR73D0XW6FQAQuoleNTZSO+e5iK4mOQAAgD8AAIA/AHCFuuQpoT86N7I73Y8lv3a6vb1I4t09AAAAAAAAAAAN6v89exSoN9LEgTqvKfg410VSPGMXprkAAIA/AACAP2ZupbtxBTE62zV0Ol+iNTxvHta7H94YvQAAgD8AAAAAjRPEPWIZiD/+VaU+/2gbv0gzwz2v+z0+AAAAAAAAAAAavrG9uBaxueB09Lg6J9g0jYM9O5wrETgAAAAAAACAP7Py1T0U8KS6TJxCOwCY2bOSKsE6gsdfugAAgD8AAIA/c5J+PtI8+jzxho86cUBgOb1giT42+9i5AACAPwAAgD+axf48bKzYu91iKjxfD9k7mXhXPV3rxbwAAIA/AACAP1pFpD32ZFy6ZtAHPB+xCTZhPYu7owALNQAAgD8AAIA/s9AePfYkALrVptS6aZkotkLzFDplv/k5AACAPwAAgD/zHpU+7oCMPwFGAD/J4CC/bNGQPj6dBT4AAAAAAAAAAICXdD171oS6PY3zO0QwTTx4Noq5qgc2vQAAgD8AAIA/AD+6vI8uM7orGPI6c9a7tZwmAzqcXAy6AACAPwAAgD/mBtk97Bnfuf4UULtm3K+1m7RGuUBKdToAAIA/AAAAAG1SPb6RYko+yG95Pv2Blb7VyHg9iNQlvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
+ },
61
+ "_last_episode_starts": {
62
+ ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
64
+ },
65
+ "_last_original_obs": null,
66
+ "_episode_num": 0,
67
+ "use_sde": false,
68
+ "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -0.015808000000000044,
70
+ "ep_info_buffer": {
71
+ ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVchAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIMQqCx7fXMUCUhpRSlIwBbJRLqIwBdJRHQH8O2PLgXM11fZQoaAZoCWgPQwiughjo2lf9v5SGlFKUaBVLoGgWR0B/Es0BOpKjdX2UKGgGaAloD0MIUtFY+ztrY0CUhpRSlGgVTegDaBZHQH81XdKujh11fZQoaAZoCWgPQwjqswOuKw1hQJSGlFKUaBVN6ANoFkdAfzcytFKChHV9lChoBmgJaA9DCGeasP3kr2TAlIaUUpRoFU1iAmgWR0B/OUka/ATJdX2UKGgGaAloD0MIVp+rrVg1Z0CUhpRSlGgVTegDaBZHQH85OkP+XJJ1fZQoaAZoCWgPQwgvFLAdjFw7QJSGlFKUaBVLpGgWR0B/PVkGzKLbdX2UKGgGaAloD0MIJCao4VsDUUCUhpRSlGgVTegDaBZHQH/CH2M85jp1fZQoaAZoCWgPQwjNkCqK1zVsQJSGlFKUaBVNtQFoFkdAf8ZTefqX4XV9lChoBmgJaA9DCNSa5h2nHD5AlIaUUpRoFUuUaBZHQH/nFwHZ9NN1fZQoaAZoCWgPQwizsn3IWydfQJSGlFKUaBVN6ANoFkdAgBTNp/PPcHV9lChoBmgJaA9DCOEnDqDfdF1AlIaUUpRoFU3oA2gWR0CAFzKbKA8TdX2UKGgGaAloD0MIvASnPpAKWUCUhpRSlGgVTegDaBZHQIAaQcghbGF1fZQoaAZoCWgPQwhYjpCBPIc+QJSGlFKUaBVLh2gWR0CAKdbfP5YYdX2UKGgGaAloD0MIjV4NUJq4ZECUhpRSlGgVTegDaBZHQIAz2oNutOp1fZQoaAZoCWgPQwj9SXzuBBdEQJSGlFKUaBVN6ANoFkdAgD4sK1G9YnV9lChoBmgJaA9DCDXTvU5qBmJAlIaUUpRoFU3oA2gWR0CAPxG7z06HdX2UKGgGaAloD0MIa/EpAMbjLUCUhpRSlGgVS65oFkdAgEW/4yoGZHV9lChoBmgJaA9DCLPTD+oiRWRAlIaUUpRoFU3oA2gWR0CASJQpF1B/dX2UKGgGaAloD0MIfjmzXaGwWkCUhpRSlGgVTegDaBZHQIBL/gvUSZl1fZQoaAZoCWgPQwj2Yign2vhbQJSGlFKUaBVN6ANoFkdAgEzkJ8fFJnV9lChoBmgJaA9DCEK1wYnoAzTAlIaUUpRoFUucaBZHQIBT0DIRywR1fZQoaAZoCWgPQwisOqsF9rZhQJSGlFKUaBVN6ANoFkdAgGAtw71ZknV9lChoBmgJaA9DCEJcOXvnvGJAlIaUUpRoFU3oA2gWR0CAYRKyOaOQdX2UKGgGaAloD0MIH0q05PERWkCUhpRSlGgVTegDaBZHQIBiMBGQSzx1fZQoaAZoCWgPQwgCgc6kTVxkQJSGlFKUaBVN6ANoFkdAgGItJFspHHV9lChoBmgJaA9DCPvNxHQh0GJAlIaUUpRoFU3oA2gWR0CAZF7Kq4pddX2UKGgGaAloD0MI422l12Z/WkCUhpRSlGgVTegDaBZHQICo+qo60Y11fZQoaAZoCWgPQwiK52wBoUVCQJSGlFKUaBVLnWgWR0CAqXwl0HQhdX2UKGgGaAloD0MI91rQe2O0UECUhpRSlGgVTegDaBZHQIC5qCUX5311fZQoaAZoCWgPQwh9l1KXjGPiP5SGlFKUaBVLvGgWR0CAwaUiY9gXdX2UKGgGaAloD0MI76mc9pSBXUCUhpRSlGgVTegDaBZHQIDbL0HyEtd1fZQoaAZoCWgPQwjEswQZgSRkQJSGlFKUaBVN6ANoFkdAgN6BbnoxH3V9lChoBmgJaA9DCLuYZrrXYGNAlIaUUpRoFU3oA2gWR0CA+KMuvlltdX2UKGgGaAloD0MIbk4lA8DqYUCUhpRSlGgVTegDaBZHQIEEfwb2lEZ1fZQoaAZoCWgPQwhKDW0ANrw2wJSGlFKUaBVL92gWR0CBB51DjR2KdX2UKGgGaAloD0MIbQIMy5/jXECUhpRSlGgVTegDaBZHQIEMDUPQOWl1fZQoaAZoCWgPQwgMVpxqLX9eQJSGlFKUaBVN6ANoFkdAgQ8WXC0ngHV9lChoBmgJaA9DCB767laWtVxAlIaUUpRoFU3oA2gWR0CBErArxy4ndX2UKGgGaAloD0MI/tXjvtVAYkCUhpRSlGgVTegDaBZHQIETibvw3Hd1fZQoaAZoCWgPQwh4QURqWiBgQJSGlFKUaBVN6ANoFkdAgRsAz544ZXV9lChoBmgJaA9DCGkc6ndhdWFAlIaUUpRoFU3oA2gWR0CBJ5LW7OE/dX2UKGgGaAloD0MImfIhqJp5ZECUhpRSlGgVTegDaBZHQIEouB4D9wZ1fZQoaAZoCWgPQwh3oblOIzlgQJSGlFKUaBVN6ANoFkdAgSi5xJd0JXV9lChoBmgJaA9DCNrGn6hsRD1AlIaUUpRoFUvPaBZHQIEq0a6z3RJ1fZQoaAZoCWgPQwgZ6NoX0AhhQJSGlFKUaBVN6ANoFkdAgStOearmyXV9lChoBmgJaA9DCJSilXuBu11AlIaUUpRoFU3oA2gWR0CBcVP8hs68dX2UKGgGaAloD0MIVHO5wVC7MkCUhpRSlGgVS41oFkdAgXP/io86m3V9lChoBmgJaA9DCJGYoIZvHWNAlIaUUpRoFU3oA2gWR0CBgibzbvgFdX2UKGgGaAloD0MIGcizy7cPW0CUhpRSlGgVTegDaBZHQIGKdvIfbK11fZQoaAZoCWgPQwh7ZkmAGqFiQJSGlFKUaBVNfwNoFkdAgZN3L/0dzXV9lChoBmgJaA9DCGITmbnAaWFAlIaUUpRoFU3oA2gWR0CBv/aC+UQkdX2UKGgGaAloD0MIs0XSbnSiZECUhpRSlGgVTegDaBZHQIHLiO/+Kj11fZQoaAZoCWgPQwj0/dR46aBNQJSGlFKUaBVN6ANoFkdAgc6J4bCJoHV9lChoBmgJaA9DCD3S4LY2K2hAlIaUUpRoFU3oA2gWR0CB0ri8WbgCdX2UKGgGaAloD0MIggLv5NOKYECUhpRSlGgVTegDaBZHQIHY/u7YkE91fZQoaAZoCWgPQwjOHJJaKKtaQJSGlFKUaBVN6ANoFkdAgdnfpUxVQ3V9lChoBmgJaA9DCDvhJTj1fFdAlIaUUpRoFU3oA2gWR0CB4UP6sQumdX2UKGgGaAloD0MInaBNDp9MLUCUhpRSlGgVS7xoFkdAgeY4TTOPenV9lChoBmgJaA9DCLXC9L0GXGFAlIaUUpRoFU3oA2gWR0CB7Yprk8zRdX2UKGgGaAloD0MI9l/nps1vZECUhpRSlGgVTegDaBZHQIHukc81XNl1fZQoaAZoCWgPQwgIyQImcBFAQJSGlFKUaBVN6ANoFkdAge6LRjSXt3V9lChoBmgJaA9DCBB1H4DUz1ZAlIaUUpRoFU3oA2gWR0CB8ISlnAZbdX2UKGgGaAloD0MI3xrYKsG1X0CUhpRSlGgVTegDaBZHQII2UJjUd7x1fZQoaAZoCWgPQwgQsFbtmnNQQJSGlFKUaBVN6ANoFkdAgjjb2lEZznV9lChoBmgJaA9DCBdH5SbqAmBAlIaUUpRoFU3oA2gWR0CCRfReC04SdX2UKGgGaAloD0MI+tUcIBiNYUCUhpRSlGgVTegDaBZHQIJNsYQ8OkN1fZQoaAZoCWgPQwgniLoPwOxhQJSGlFKUaBVN6ANoFkdAglZYMWoFV3V9lChoBmgJaA9DCN/CuvHugGFAlIaUUpRoFU3oA2gWR0CCgO2WIGhVdX2UKGgGaAloD0MI7RFqhtSIYECUhpRSlGgVTegDaBZHQIKO1cbBGhF1fZQoaAZoCWgPQwjIYTB/BXRjQJSGlFKUaBVN6ANoFkdAgpLq7Ackt3V9lChoBmgJaA9DCHU5JSCmp2FAlIaUUpRoFU3oA2gWR0CCmZgrpaA4dX2UKGgGaAloD0MIObNdoY/7ZUCUhpRSlGgVTegDaBZHQIKaajk+5e91fZQoaAZoCWgPQwjl7nN8NGtgQJSGlFKUaBVN6ANoFkdAgqHsnRb8nHV9lChoBmgJaA9DCJxqLczCOWZAlIaUUpRoFU3oA2gWR0CCpr3qzJIUdX2UKGgGaAloD0MI8j/5u3dYWECUhpRSlGgVTegDaBZHQIKuCTQmeDp1fZQoaAZoCWgPQwholC79y2NhQJSGlFKUaBVN6ANoFkdAgq8atLcsUnV9lChoBmgJaA9DCLN9yFsuyWNAlIaUUpRoFU3oA2gWR0CCrxUvwmVrdX2UKGgGaAloD0MI9RH4w8+5ZUCUhpRSlGgVTegDaBZHQIKxDijtXxR1fZQoaAZoCWgPQwj/Bu3Vx91CQJSGlFKUaBVLimgWR0CCvxSc9W6tdX2UKGgGaAloD0MIw0ZZv5k3WECUhpRSlGgVTegDaBZHQIK/nSncclx1fZQoaAZoCWgPQwgna9RDNA9mQJSGlFKUaBVN6ANoFkdAgsIYZdfLLnV9lChoBmgJaA9DCLhaJy7HmF5AlIaUUpRoFU3oA2gWR0CDBek3S8aodX2UKGgGaAloD0MIRluVRPYrYkCUhpRSlGgVTegDaBZHQIMNKxX4j8l1fZQoaAZoCWgPQwjWcJF7ujRhQJSGlFKUaBVN6ANoFkdAgxW8oYvWYnV9lChoBmgJaA9DCLXC9L2GjkdAlIaUUpRoFUvraBZHQIMks1O0svt1fZQoaAZoCWgPQwic+GpH8UNgQJSGlFKUaBVN6ANoFkdAgz6AGSpzcXV9lChoBmgJaA9DCHpvDAFAPGNAlIaUUpRoFU3oA2gWR0CDS4ZBsyi3dX2UKGgGaAloD0MIlG3gDlR5Y0CUhpRSlGgVTegDaBZHQINPbtb9qDd1fZQoaAZoCWgPQwhuMT83tDxjQJSGlFKUaBVN6ANoFkdAg1Vmm+Cbt3V9lChoBmgJaA9DCBe6EoHqOl9AlIaUUpRoFU3oA2gWR0CDVisKb8WLdX2UKGgGaAloD0MIo7CLogeBY0CUhpRSlGgVTegDaBZHQINc633Hq/x1fZQoaAZoCWgPQwiFzmvsEtJdQJSGlFKUaBVN6ANoFkdAg2F+bVjI73V9lChoBmgJaA9DCBYYsrrVuWdAlIaUUpRoFU2TAmgWR0CDZ3VJ+UhWdX2UKGgGaAloD0MIXmQCfo2qWUCUhpRSlGgVTegDaBZHQINoRwfhddF1fZQoaAZoCWgPQwi3s688SEpkQJSGlFKUaBVN6ANoFkdAg2k+LFXJYHV9lChoBmgJaA9DCBQ+WwcH2l1AlIaUUpRoFU3oA2gWR0CDaxb5dnkDdX2UKGgGaAloD0MIio7k8p+dYECUhpRSlGgVTegDaBZHQIN5WDHwPRR1fZQoaAZoCWgPQwh8nGnCdidjQJSGlFKUaBVN6ANoFkdAg3nmvfTCtXV9lChoBmgJaA9DCLO1vkjox2BAlIaUUpRoFU3oA2gWR0CDfG3Kji4sdWUu"
73
+ },
74
+ "ep_success_buffer": {
75
+ ":type:": "<class 'collections.deque'>",
76
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
+ },
78
+ "_n_updates": 124,
79
+ "n_steps": 1024,
80
+ "gamma": 0.999,
81
+ "gae_lambda": 0.98,
82
+ "ent_coef": 0.01,
83
+ "vf_coef": 0.5,
84
+ "max_grad_norm": 0.5,
85
+ "batch_size": 64,
86
+ "n_epochs": 4,
87
+ "clip_range": {
88
+ ":type:": "<class 'function'>",
89
+ ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
90
+ },
91
+ "clip_range_vf": null,
92
+ "normalize_advantage": true,
93
+ "target_kl": null
94
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:588801238648b1fcd3fe4d16c8738cd040031790b2717057347649de1c0ce641
3
+ size 84829
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cc2d797d3dff75dcc841ce0c5eedb6322950378da7f65710c9d1c237c8077b61
3
+ size 43201
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
2
+ Python: 3.7.13
3
+ Stable-Baselines3: 1.5.0
4
+ PyTorch: 1.11.0+cu113
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:361633fbe0f964dcc2cc9b5154cc5ea954949d2db951904c3a532c6358d76f88
3
+ size 220002
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 201.3517087979101, "std_reward": 37.605671199115314, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-08T13:47:27.062396"}