first model
Browse files- .gitattributes +1 -0
- README.md +28 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +94 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +7 -0
- replay.mp4 +3 -0
- results.json +1 -0
.gitattributes
CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: 201.35 +/- 37.61
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: LunarLander-v2
|
20 |
+
type: LunarLander-v2
|
21 |
+
---
|
22 |
+
|
23 |
+
# **PPO** Agent playing **LunarLander-v2**
|
24 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
25 |
+
|
26 |
+
## Usage (with Stable-baselines3)
|
27 |
+
TODO: Add your code
|
28 |
+
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f8312ce5320>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f8312ce53b0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f8312ce5440>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f8312ce54d0>", "_build": "<function ActorCriticPolicy._build at 0x7f8312ce5560>", "forward": "<function ActorCriticPolicy.forward at 0x7f8312ce55f0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f8312ce5680>", "_predict": "<function ActorCriticPolicy._predict at 0x7f8312ce5710>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f8312ce57a0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f8312ce5830>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f8312ce58c0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f8312d39390>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 507904, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1652016921.887356, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAE3bR73D0XW6FQAQuoleNTZSO+e5iK4mOQAAgD8AAIA/AHCFuuQpoT86N7I73Y8lv3a6vb1I4t09AAAAAAAAAAAN6v89exSoN9LEgTqvKfg410VSPGMXprkAAIA/AACAP2ZupbtxBTE62zV0Ol+iNTxvHta7H94YvQAAgD8AAAAAjRPEPWIZiD/+VaU+/2gbv0gzwz2v+z0+AAAAAAAAAAAavrG9uBaxueB09Lg6J9g0jYM9O5wrETgAAAAAAACAP7Py1T0U8KS6TJxCOwCY2bOSKsE6gsdfugAAgD8AAIA/c5J+PtI8+jzxho86cUBgOb1giT42+9i5AACAPwAAgD+axf48bKzYu91iKjxfD9k7mXhXPV3rxbwAAIA/AACAP1pFpD32ZFy6ZtAHPB+xCTZhPYu7owALNQAAgD8AAIA/s9AePfYkALrVptS6aZkotkLzFDplv/k5AACAPwAAgD/zHpU+7oCMPwFGAD/J4CC/bNGQPj6dBT4AAAAAAAAAAICXdD171oS6PY3zO0QwTTx4Noq5qgc2vQAAgD8AAIA/AD+6vI8uM7orGPI6c9a7tZwmAzqcXAy6AACAPwAAgD/mBtk97Bnfuf4UULtm3K+1m7RGuUBKdToAAIA/AAAAAG1SPb6RYko+yG95Pv2Blb7VyHg9iNQlvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVchAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIMQqCx7fXMUCUhpRSlIwBbJRLqIwBdJRHQH8O2PLgXM11fZQoaAZoCWgPQwiughjo2lf9v5SGlFKUaBVLoGgWR0B/Es0BOpKjdX2UKGgGaAloD0MIUtFY+ztrY0CUhpRSlGgVTegDaBZHQH81XdKujh11fZQoaAZoCWgPQwjqswOuKw1hQJSGlFKUaBVN6ANoFkdAfzcytFKChHV9lChoBmgJaA9DCGeasP3kr2TAlIaUUpRoFU1iAmgWR0B/OUka/ATJdX2UKGgGaAloD0MIVp+rrVg1Z0CUhpRSlGgVTegDaBZHQH85OkP+XJJ1fZQoaAZoCWgPQwgvFLAdjFw7QJSGlFKUaBVLpGgWR0B/PVkGzKLbdX2UKGgGaAloD0MIJCao4VsDUUCUhpRSlGgVTegDaBZHQH/CH2M85jp1fZQoaAZoCWgPQwjNkCqK1zVsQJSGlFKUaBVNtQFoFkdAf8ZTefqX4XV9lChoBmgJaA9DCNSa5h2nHD5AlIaUUpRoFUuUaBZHQH/nFwHZ9NN1fZQoaAZoCWgPQwizsn3IWydfQJSGlFKUaBVN6ANoFkdAgBTNp/PPcHV9lChoBmgJaA9DCOEnDqDfdF1AlIaUUpRoFU3oA2gWR0CAFzKbKA8TdX2UKGgGaAloD0MIvASnPpAKWUCUhpRSlGgVTegDaBZHQIAaQcghbGF1fZQoaAZoCWgPQwhYjpCBPIc+QJSGlFKUaBVLh2gWR0CAKdbfP5YYdX2UKGgGaAloD0MIjV4NUJq4ZECUhpRSlGgVTegDaBZHQIAz2oNutOp1fZQoaAZoCWgPQwj9SXzuBBdEQJSGlFKUaBVN6ANoFkdAgD4sK1G9YnV9lChoBmgJaA9DCDXTvU5qBmJAlIaUUpRoFU3oA2gWR0CAPxG7z06HdX2UKGgGaAloD0MIa/EpAMbjLUCUhpRSlGgVS65oFkdAgEW/4yoGZHV9lChoBmgJaA9DCLPTD+oiRWRAlIaUUpRoFU3oA2gWR0CASJQpF1B/dX2UKGgGaAloD0MIfjmzXaGwWkCUhpRSlGgVTegDaBZHQIBL/gvUSZl1fZQoaAZoCWgPQwj2Yign2vhbQJSGlFKUaBVN6ANoFkdAgEzkJ8fFJnV9lChoBmgJaA9DCEK1wYnoAzTAlIaUUpRoFUucaBZHQIBT0DIRywR1fZQoaAZoCWgPQwisOqsF9rZhQJSGlFKUaBVN6ANoFkdAgGAtw71ZknV9lChoBmgJaA9DCEJcOXvnvGJAlIaUUpRoFU3oA2gWR0CAYRKyOaOQdX2UKGgGaAloD0MIH0q05PERWkCUhpRSlGgVTegDaBZHQIBiMBGQSzx1fZQoaAZoCWgPQwgCgc6kTVxkQJSGlFKUaBVN6ANoFkdAgGItJFspHHV9lChoBmgJaA9DCPvNxHQh0GJAlIaUUpRoFU3oA2gWR0CAZF7Kq4pddX2UKGgGaAloD0MI422l12Z/WkCUhpRSlGgVTegDaBZHQICo+qo60Y11fZQoaAZoCWgPQwiK52wBoUVCQJSGlFKUaBVLnWgWR0CAqXwl0HQhdX2UKGgGaAloD0MI91rQe2O0UECUhpRSlGgVTegDaBZHQIC5qCUX5311fZQoaAZoCWgPQwh9l1KXjGPiP5SGlFKUaBVLvGgWR0CAwaUiY9gXdX2UKGgGaAloD0MI76mc9pSBXUCUhpRSlGgVTegDaBZHQIDbL0HyEtd1fZQoaAZoCWgPQwjEswQZgSRkQJSGlFKUaBVN6ANoFkdAgN6BbnoxH3V9lChoBmgJaA9DCLuYZrrXYGNAlIaUUpRoFU3oA2gWR0CA+KMuvlltdX2UKGgGaAloD0MIbk4lA8DqYUCUhpRSlGgVTegDaBZHQIEEfwb2lEZ1fZQoaAZoCWgPQwhKDW0ANrw2wJSGlFKUaBVL92gWR0CBB51DjR2KdX2UKGgGaAloD0MIbQIMy5/jXECUhpRSlGgVTegDaBZHQIEMDUPQOWl1fZQoaAZoCWgPQwgMVpxqLX9eQJSGlFKUaBVN6ANoFkdAgQ8WXC0ngHV9lChoBmgJaA9DCB767laWtVxAlIaUUpRoFU3oA2gWR0CBErArxy4ndX2UKGgGaAloD0MI/tXjvtVAYkCUhpRSlGgVTegDaBZHQIETibvw3Hd1fZQoaAZoCWgPQwh4QURqWiBgQJSGlFKUaBVN6ANoFkdAgRsAz544ZXV9lChoBmgJaA9DCGkc6ndhdWFAlIaUUpRoFU3oA2gWR0CBJ5LW7OE/dX2UKGgGaAloD0MImfIhqJp5ZECUhpRSlGgVTegDaBZHQIEouB4D9wZ1fZQoaAZoCWgPQwh3oblOIzlgQJSGlFKUaBVN6ANoFkdAgSi5xJd0JXV9lChoBmgJaA9DCNrGn6hsRD1AlIaUUpRoFUvPaBZHQIEq0a6z3RJ1fZQoaAZoCWgPQwgZ6NoX0AhhQJSGlFKUaBVN6ANoFkdAgStOearmyXV9lChoBmgJaA9DCJSilXuBu11AlIaUUpRoFU3oA2gWR0CBcVP8hs68dX2UKGgGaAloD0MIVHO5wVC7MkCUhpRSlGgVS41oFkdAgXP/io86m3V9lChoBmgJaA9DCJGYoIZvHWNAlIaUUpRoFU3oA2gWR0CBgibzbvgFdX2UKGgGaAloD0MIGcizy7cPW0CUhpRSlGgVTegDaBZHQIGKdvIfbK11fZQoaAZoCWgPQwh7ZkmAGqFiQJSGlFKUaBVNfwNoFkdAgZN3L/0dzXV9lChoBmgJaA9DCGITmbnAaWFAlIaUUpRoFU3oA2gWR0CBv/aC+UQkdX2UKGgGaAloD0MIs0XSbnSiZECUhpRSlGgVTegDaBZHQIHLiO/+Kj11fZQoaAZoCWgPQwj0/dR46aBNQJSGlFKUaBVN6ANoFkdAgc6J4bCJoHV9lChoBmgJaA9DCD3S4LY2K2hAlIaUUpRoFU3oA2gWR0CB0ri8WbgCdX2UKGgGaAloD0MIggLv5NOKYECUhpRSlGgVTegDaBZHQIHY/u7YkE91fZQoaAZoCWgPQwjOHJJaKKtaQJSGlFKUaBVN6ANoFkdAgdnfpUxVQ3V9lChoBmgJaA9DCDvhJTj1fFdAlIaUUpRoFU3oA2gWR0CB4UP6sQumdX2UKGgGaAloD0MInaBNDp9MLUCUhpRSlGgVS7xoFkdAgeY4TTOPenV9lChoBmgJaA9DCLXC9L0GXGFAlIaUUpRoFU3oA2gWR0CB7Yprk8zRdX2UKGgGaAloD0MI9l/nps1vZECUhpRSlGgVTegDaBZHQIHukc81XNl1fZQoaAZoCWgPQwgIyQImcBFAQJSGlFKUaBVN6ANoFkdAge6LRjSXt3V9lChoBmgJaA9DCBB1H4DUz1ZAlIaUUpRoFU3oA2gWR0CB8ISlnAZbdX2UKGgGaAloD0MI3xrYKsG1X0CUhpRSlGgVTegDaBZHQII2UJjUd7x1fZQoaAZoCWgPQwgQsFbtmnNQQJSGlFKUaBVN6ANoFkdAgjjb2lEZznV9lChoBmgJaA9DCBdH5SbqAmBAlIaUUpRoFU3oA2gWR0CCRfReC04SdX2UKGgGaAloD0MI+tUcIBiNYUCUhpRSlGgVTegDaBZHQIJNsYQ8OkN1fZQoaAZoCWgPQwgniLoPwOxhQJSGlFKUaBVN6ANoFkdAglZYMWoFV3V9lChoBmgJaA9DCN/CuvHugGFAlIaUUpRoFU3oA2gWR0CCgO2WIGhVdX2UKGgGaAloD0MI7RFqhtSIYECUhpRSlGgVTegDaBZHQIKO1cbBGhF1fZQoaAZoCWgPQwjIYTB/BXRjQJSGlFKUaBVN6ANoFkdAgpLq7Ackt3V9lChoBmgJaA9DCHU5JSCmp2FAlIaUUpRoFU3oA2gWR0CCmZgrpaA4dX2UKGgGaAloD0MIObNdoY/7ZUCUhpRSlGgVTegDaBZHQIKaajk+5e91fZQoaAZoCWgPQwjl7nN8NGtgQJSGlFKUaBVN6ANoFkdAgqHsnRb8nHV9lChoBmgJaA9DCJxqLczCOWZAlIaUUpRoFU3oA2gWR0CCpr3qzJIUdX2UKGgGaAloD0MI8j/5u3dYWECUhpRSlGgVTegDaBZHQIKuCTQmeDp1fZQoaAZoCWgPQwholC79y2NhQJSGlFKUaBVN6ANoFkdAgq8atLcsUnV9lChoBmgJaA9DCLN9yFsuyWNAlIaUUpRoFU3oA2gWR0CCrxUvwmVrdX2UKGgGaAloD0MI9RH4w8+5ZUCUhpRSlGgVTegDaBZHQIKxDijtXxR1fZQoaAZoCWgPQwj/Bu3Vx91CQJSGlFKUaBVLimgWR0CCvxSc9W6tdX2UKGgGaAloD0MIw0ZZv5k3WECUhpRSlGgVTegDaBZHQIK/nSncclx1fZQoaAZoCWgPQwgna9RDNA9mQJSGlFKUaBVN6ANoFkdAgsIYZdfLLnV9lChoBmgJaA9DCLhaJy7HmF5AlIaUUpRoFU3oA2gWR0CDBek3S8aodX2UKGgGaAloD0MIRluVRPYrYkCUhpRSlGgVTegDaBZHQIMNKxX4j8l1fZQoaAZoCWgPQwjWcJF7ujRhQJSGlFKUaBVN6ANoFkdAgxW8oYvWYnV9lChoBmgJaA9DCLXC9L2GjkdAlIaUUpRoFUvraBZHQIMks1O0svt1fZQoaAZoCWgPQwic+GpH8UNgQJSGlFKUaBVN6ANoFkdAgz6AGSpzcXV9lChoBmgJaA9DCHpvDAFAPGNAlIaUUpRoFU3oA2gWR0CDS4ZBsyi3dX2UKGgGaAloD0MIlG3gDlR5Y0CUhpRSlGgVTegDaBZHQINPbtb9qDd1fZQoaAZoCWgPQwhuMT83tDxjQJSGlFKUaBVN6ANoFkdAg1Vmm+Cbt3V9lChoBmgJaA9DCBe6EoHqOl9AlIaUUpRoFU3oA2gWR0CDVisKb8WLdX2UKGgGaAloD0MIo7CLogeBY0CUhpRSlGgVTegDaBZHQINc633Hq/x1fZQoaAZoCWgPQwiFzmvsEtJdQJSGlFKUaBVN6ANoFkdAg2F+bVjI73V9lChoBmgJaA9DCBYYsrrVuWdAlIaUUpRoFU2TAmgWR0CDZ3VJ+UhWdX2UKGgGaAloD0MIXmQCfo2qWUCUhpRSlGgVTegDaBZHQINoRwfhddF1fZQoaAZoCWgPQwi3s688SEpkQJSGlFKUaBVN6ANoFkdAg2k+LFXJYHV9lChoBmgJaA9DCBQ+WwcH2l1AlIaUUpRoFU3oA2gWR0CDaxb5dnkDdX2UKGgGaAloD0MIio7k8p+dYECUhpRSlGgVTegDaBZHQIN5WDHwPRR1fZQoaAZoCWgPQwh8nGnCdidjQJSGlFKUaBVN6ANoFkdAg3nmvfTCtXV9lChoBmgJaA9DCLO1vkjox2BAlIaUUpRoFU3oA2gWR0CDfG3Kji4sdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 124, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ce6c54242b25defaccd49c74bfefe452ed7f1e4f7fd66771ac6403c63b7c6c7e
|
3 |
+
size 144027
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.5.0
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f8312ce5320>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f8312ce53b0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f8312ce5440>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f8312ce54d0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f8312ce5560>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f8312ce55f0>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f8312ce5680>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f8312ce5710>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f8312ce57a0>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f8312ce5830>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f8312ce58c0>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7f8312d39390>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 507904,
|
46 |
+
"_total_timesteps": 500000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1652016921.887356,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAE3bR73D0XW6FQAQuoleNTZSO+e5iK4mOQAAgD8AAIA/AHCFuuQpoT86N7I73Y8lv3a6vb1I4t09AAAAAAAAAAAN6v89exSoN9LEgTqvKfg410VSPGMXprkAAIA/AACAP2ZupbtxBTE62zV0Ol+iNTxvHta7H94YvQAAgD8AAAAAjRPEPWIZiD/+VaU+/2gbv0gzwz2v+z0+AAAAAAAAAAAavrG9uBaxueB09Lg6J9g0jYM9O5wrETgAAAAAAACAP7Py1T0U8KS6TJxCOwCY2bOSKsE6gsdfugAAgD8AAIA/c5J+PtI8+jzxho86cUBgOb1giT42+9i5AACAPwAAgD+axf48bKzYu91iKjxfD9k7mXhXPV3rxbwAAIA/AACAP1pFpD32ZFy6ZtAHPB+xCTZhPYu7owALNQAAgD8AAIA/s9AePfYkALrVptS6aZkotkLzFDplv/k5AACAPwAAgD/zHpU+7oCMPwFGAD/J4CC/bNGQPj6dBT4AAAAAAAAAAICXdD171oS6PY3zO0QwTTx4Noq5qgc2vQAAgD8AAIA/AD+6vI8uM7orGPI6c9a7tZwmAzqcXAy6AACAPwAAgD/mBtk97Bnfuf4UULtm3K+1m7RGuUBKdToAAIA/AAAAAG1SPb6RYko+yG95Pv2Blb7VyHg9iNQlvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.015808000000000044,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVchAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIMQqCx7fXMUCUhpRSlIwBbJRLqIwBdJRHQH8O2PLgXM11fZQoaAZoCWgPQwiughjo2lf9v5SGlFKUaBVLoGgWR0B/Es0BOpKjdX2UKGgGaAloD0MIUtFY+ztrY0CUhpRSlGgVTegDaBZHQH81XdKujh11fZQoaAZoCWgPQwjqswOuKw1hQJSGlFKUaBVN6ANoFkdAfzcytFKChHV9lChoBmgJaA9DCGeasP3kr2TAlIaUUpRoFU1iAmgWR0B/OUka/ATJdX2UKGgGaAloD0MIVp+rrVg1Z0CUhpRSlGgVTegDaBZHQH85OkP+XJJ1fZQoaAZoCWgPQwgvFLAdjFw7QJSGlFKUaBVLpGgWR0B/PVkGzKLbdX2UKGgGaAloD0MIJCao4VsDUUCUhpRSlGgVTegDaBZHQH/CH2M85jp1fZQoaAZoCWgPQwjNkCqK1zVsQJSGlFKUaBVNtQFoFkdAf8ZTefqX4XV9lChoBmgJaA9DCNSa5h2nHD5AlIaUUpRoFUuUaBZHQH/nFwHZ9NN1fZQoaAZoCWgPQwizsn3IWydfQJSGlFKUaBVN6ANoFkdAgBTNp/PPcHV9lChoBmgJaA9DCOEnDqDfdF1AlIaUUpRoFU3oA2gWR0CAFzKbKA8TdX2UKGgGaAloD0MIvASnPpAKWUCUhpRSlGgVTegDaBZHQIAaQcghbGF1fZQoaAZoCWgPQwhYjpCBPIc+QJSGlFKUaBVLh2gWR0CAKdbfP5YYdX2UKGgGaAloD0MIjV4NUJq4ZECUhpRSlGgVTegDaBZHQIAz2oNutOp1fZQoaAZoCWgPQwj9SXzuBBdEQJSGlFKUaBVN6ANoFkdAgD4sK1G9YnV9lChoBmgJaA9DCDXTvU5qBmJAlIaUUpRoFU3oA2gWR0CAPxG7z06HdX2UKGgGaAloD0MIa/EpAMbjLUCUhpRSlGgVS65oFkdAgEW/4yoGZHV9lChoBmgJaA9DCLPTD+oiRWRAlIaUUpRoFU3oA2gWR0CASJQpF1B/dX2UKGgGaAloD0MIfjmzXaGwWkCUhpRSlGgVTegDaBZHQIBL/gvUSZl1fZQoaAZoCWgPQwj2Yign2vhbQJSGlFKUaBVN6ANoFkdAgEzkJ8fFJnV9lChoBmgJaA9DCEK1wYnoAzTAlIaUUpRoFUucaBZHQIBT0DIRywR1fZQoaAZoCWgPQwisOqsF9rZhQJSGlFKUaBVN6ANoFkdAgGAtw71ZknV9lChoBmgJaA9DCEJcOXvnvGJAlIaUUpRoFU3oA2gWR0CAYRKyOaOQdX2UKGgGaAloD0MIH0q05PERWkCUhpRSlGgVTegDaBZHQIBiMBGQSzx1fZQoaAZoCWgPQwgCgc6kTVxkQJSGlFKUaBVN6ANoFkdAgGItJFspHHV9lChoBmgJaA9DCPvNxHQh0GJAlIaUUpRoFU3oA2gWR0CAZF7Kq4pddX2UKGgGaAloD0MI422l12Z/WkCUhpRSlGgVTegDaBZHQICo+qo60Y11fZQoaAZoCWgPQwiK52wBoUVCQJSGlFKUaBVLnWgWR0CAqXwl0HQhdX2UKGgGaAloD0MI91rQe2O0UECUhpRSlGgVTegDaBZHQIC5qCUX5311fZQoaAZoCWgPQwh9l1KXjGPiP5SGlFKUaBVLvGgWR0CAwaUiY9gXdX2UKGgGaAloD0MI76mc9pSBXUCUhpRSlGgVTegDaBZHQIDbL0HyEtd1fZQoaAZoCWgPQwjEswQZgSRkQJSGlFKUaBVN6ANoFkdAgN6BbnoxH3V9lChoBmgJaA9DCLuYZrrXYGNAlIaUUpRoFU3oA2gWR0CA+KMuvlltdX2UKGgGaAloD0MIbk4lA8DqYUCUhpRSlGgVTegDaBZHQIEEfwb2lEZ1fZQoaAZoCWgPQwhKDW0ANrw2wJSGlFKUaBVL92gWR0CBB51DjR2KdX2UKGgGaAloD0MIbQIMy5/jXECUhpRSlGgVTegDaBZHQIEMDUPQOWl1fZQoaAZoCWgPQwgMVpxqLX9eQJSGlFKUaBVN6ANoFkdAgQ8WXC0ngHV9lChoBmgJaA9DCB767laWtVxAlIaUUpRoFU3oA2gWR0CBErArxy4ndX2UKGgGaAloD0MI/tXjvtVAYkCUhpRSlGgVTegDaBZHQIETibvw3Hd1fZQoaAZoCWgPQwh4QURqWiBgQJSGlFKUaBVN6ANoFkdAgRsAz544ZXV9lChoBmgJaA9DCGkc6ndhdWFAlIaUUpRoFU3oA2gWR0CBJ5LW7OE/dX2UKGgGaAloD0MImfIhqJp5ZECUhpRSlGgVTegDaBZHQIEouB4D9wZ1fZQoaAZoCWgPQwh3oblOIzlgQJSGlFKUaBVN6ANoFkdAgSi5xJd0JXV9lChoBmgJaA9DCNrGn6hsRD1AlIaUUpRoFUvPaBZHQIEq0a6z3RJ1fZQoaAZoCWgPQwgZ6NoX0AhhQJSGlFKUaBVN6ANoFkdAgStOearmyXV9lChoBmgJaA9DCJSilXuBu11AlIaUUpRoFU3oA2gWR0CBcVP8hs68dX2UKGgGaAloD0MIVHO5wVC7MkCUhpRSlGgVS41oFkdAgXP/io86m3V9lChoBmgJaA9DCJGYoIZvHWNAlIaUUpRoFU3oA2gWR0CBgibzbvgFdX2UKGgGaAloD0MIGcizy7cPW0CUhpRSlGgVTegDaBZHQIGKdvIfbK11fZQoaAZoCWgPQwh7ZkmAGqFiQJSGlFKUaBVNfwNoFkdAgZN3L/0dzXV9lChoBmgJaA9DCGITmbnAaWFAlIaUUpRoFU3oA2gWR0CBv/aC+UQkdX2UKGgGaAloD0MIs0XSbnSiZECUhpRSlGgVTegDaBZHQIHLiO/+Kj11fZQoaAZoCWgPQwj0/dR46aBNQJSGlFKUaBVN6ANoFkdAgc6J4bCJoHV9lChoBmgJaA9DCD3S4LY2K2hAlIaUUpRoFU3oA2gWR0CB0ri8WbgCdX2UKGgGaAloD0MIggLv5NOKYECUhpRSlGgVTegDaBZHQIHY/u7YkE91fZQoaAZoCWgPQwjOHJJaKKtaQJSGlFKUaBVN6ANoFkdAgdnfpUxVQ3V9lChoBmgJaA9DCDvhJTj1fFdAlIaUUpRoFU3oA2gWR0CB4UP6sQumdX2UKGgGaAloD0MInaBNDp9MLUCUhpRSlGgVS7xoFkdAgeY4TTOPenV9lChoBmgJaA9DCLXC9L0GXGFAlIaUUpRoFU3oA2gWR0CB7Yprk8zRdX2UKGgGaAloD0MI9l/nps1vZECUhpRSlGgVTegDaBZHQIHukc81XNl1fZQoaAZoCWgPQwgIyQImcBFAQJSGlFKUaBVN6ANoFkdAge6LRjSXt3V9lChoBmgJaA9DCBB1H4DUz1ZAlIaUUpRoFU3oA2gWR0CB8ISlnAZbdX2UKGgGaAloD0MI3xrYKsG1X0CUhpRSlGgVTegDaBZHQII2UJjUd7x1fZQoaAZoCWgPQwgQsFbtmnNQQJSGlFKUaBVN6ANoFkdAgjjb2lEZznV9lChoBmgJaA9DCBdH5SbqAmBAlIaUUpRoFU3oA2gWR0CCRfReC04SdX2UKGgGaAloD0MI+tUcIBiNYUCUhpRSlGgVTegDaBZHQIJNsYQ8OkN1fZQoaAZoCWgPQwgniLoPwOxhQJSGlFKUaBVN6ANoFkdAglZYMWoFV3V9lChoBmgJaA9DCN/CuvHugGFAlIaUUpRoFU3oA2gWR0CCgO2WIGhVdX2UKGgGaAloD0MI7RFqhtSIYECUhpRSlGgVTegDaBZHQIKO1cbBGhF1fZQoaAZoCWgPQwjIYTB/BXRjQJSGlFKUaBVN6ANoFkdAgpLq7Ackt3V9lChoBmgJaA9DCHU5JSCmp2FAlIaUUpRoFU3oA2gWR0CCmZgrpaA4dX2UKGgGaAloD0MIObNdoY/7ZUCUhpRSlGgVTegDaBZHQIKaajk+5e91fZQoaAZoCWgPQwjl7nN8NGtgQJSGlFKUaBVN6ANoFkdAgqHsnRb8nHV9lChoBmgJaA9DCJxqLczCOWZAlIaUUpRoFU3oA2gWR0CCpr3qzJIUdX2UKGgGaAloD0MI8j/5u3dYWECUhpRSlGgVTegDaBZHQIKuCTQmeDp1fZQoaAZoCWgPQwholC79y2NhQJSGlFKUaBVN6ANoFkdAgq8atLcsUnV9lChoBmgJaA9DCLN9yFsuyWNAlIaUUpRoFU3oA2gWR0CCrxUvwmVrdX2UKGgGaAloD0MI9RH4w8+5ZUCUhpRSlGgVTegDaBZHQIKxDijtXxR1fZQoaAZoCWgPQwj/Bu3Vx91CQJSGlFKUaBVLimgWR0CCvxSc9W6tdX2UKGgGaAloD0MIw0ZZv5k3WECUhpRSlGgVTegDaBZHQIK/nSncclx1fZQoaAZoCWgPQwgna9RDNA9mQJSGlFKUaBVN6ANoFkdAgsIYZdfLLnV9lChoBmgJaA9DCLhaJy7HmF5AlIaUUpRoFU3oA2gWR0CDBek3S8aodX2UKGgGaAloD0MIRluVRPYrYkCUhpRSlGgVTegDaBZHQIMNKxX4j8l1fZQoaAZoCWgPQwjWcJF7ujRhQJSGlFKUaBVN6ANoFkdAgxW8oYvWYnV9lChoBmgJaA9DCLXC9L2GjkdAlIaUUpRoFUvraBZHQIMks1O0svt1fZQoaAZoCWgPQwic+GpH8UNgQJSGlFKUaBVN6ANoFkdAgz6AGSpzcXV9lChoBmgJaA9DCHpvDAFAPGNAlIaUUpRoFU3oA2gWR0CDS4ZBsyi3dX2UKGgGaAloD0MIlG3gDlR5Y0CUhpRSlGgVTegDaBZHQINPbtb9qDd1fZQoaAZoCWgPQwhuMT83tDxjQJSGlFKUaBVN6ANoFkdAg1Vmm+Cbt3V9lChoBmgJaA9DCBe6EoHqOl9AlIaUUpRoFU3oA2gWR0CDVisKb8WLdX2UKGgGaAloD0MIo7CLogeBY0CUhpRSlGgVTegDaBZHQINc633Hq/x1fZQoaAZoCWgPQwiFzmvsEtJdQJSGlFKUaBVN6ANoFkdAg2F+bVjI73V9lChoBmgJaA9DCBYYsrrVuWdAlIaUUpRoFU2TAmgWR0CDZ3VJ+UhWdX2UKGgGaAloD0MIXmQCfo2qWUCUhpRSlGgVTegDaBZHQINoRwfhddF1fZQoaAZoCWgPQwi3s688SEpkQJSGlFKUaBVN6ANoFkdAg2k+LFXJYHV9lChoBmgJaA9DCBQ+WwcH2l1AlIaUUpRoFU3oA2gWR0CDaxb5dnkDdX2UKGgGaAloD0MIio7k8p+dYECUhpRSlGgVTegDaBZHQIN5WDHwPRR1fZQoaAZoCWgPQwh8nGnCdidjQJSGlFKUaBVN6ANoFkdAg3nmvfTCtXV9lChoBmgJaA9DCLO1vkjox2BAlIaUUpRoFU3oA2gWR0CDfG3Kji4sdWUu"
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 124,
|
79 |
+
"n_steps": 1024,
|
80 |
+
"gamma": 0.999,
|
81 |
+
"gae_lambda": 0.98,
|
82 |
+
"ent_coef": 0.01,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 4,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:588801238648b1fcd3fe4d16c8738cd040031790b2717057347649de1c0ce641
|
3 |
+
size 84829
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cc2d797d3dff75dcc841ce0c5eedb6322950378da7f65710c9d1c237c8077b61
|
3 |
+
size 43201
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
|
2 |
+
Python: 3.7.13
|
3 |
+
Stable-Baselines3: 1.5.0
|
4 |
+
PyTorch: 1.11.0+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:361633fbe0f964dcc2cc9b5154cc5ea954949d2db951904c3a532c6358d76f88
|
3 |
+
size 220002
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 201.3517087979101, "std_reward": 37.605671199115314, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-08T13:47:27.062396"}
|