{"policy_class": {":type:": "", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "_get_constructor_parameters": "", "reset_noise": "", "_build_mlp_extractor": "", "_build": "", "forward": "", "_get_action_dist_from_latent": "", "_predict": "", "evaluate_actions": "", "get_distribution": "", "predict_values": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fcf9c742930>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "", ":serialized:": "gAWVngEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBXNoYXBllEsIhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSwiFlIwBQ5R0lFKUjARoaWdolGgSKJYgAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lGgKSwiFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWCAAAAAAAAAAAAAAAAAAAAJRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZRoFXSUUpSMDWJvdW5kZWRfYWJvdmWUaBIolggAAAAAAAAAAAAAAAAAAACUaCFLCIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "", ":serialized:": "gAWVgQAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwFc2hhcGWUKYwFZHR5cGWUjAVudW1weZRoB5OUjAJpOJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRijApfbnBfcmFuZG9tlE51Yi4=", "n": 4, "shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1652098231.300375, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAFB/ar4ECj4/bNMFP4C5mr4VHIq9EnPRPgAAAAAAAAAABnhpPsrEez6ixA++5uhpvr50hLosdJE9AAAAAAAAAABN5Ew+qVPOPsUmAb5Gm26+fJhnPQznBbsAAAAAAAAAAFqpwz0UoIi6Ot/TNADxei7OK+C5AOYLtAAAgD8AAAAAY3CEvognrT8qE/S+qQKXvtcOxr7QS0u+AAAAAAAAAAAm7eq979gGP7Ekuj7PBqa+kfllPZuukT0AAAAAAAAAAI1TGD5BNr68hMSzPK/H4Tyl/ie+8aOsPQAAgD8AAIA/mgVDvXbqsT7qe1s+o0LCvhwwfD32/rm8AAAAAAAAAADmTIw+apBfvV4yGj42dMu8puy/vloUkL0AAIA/AACAP8BKhb0/OZE/xtV0vkzwyb6Lp/O9TkbYvQAAAAAAAAAAZmZivV/mmT+KGLO9aViyvqmXFL4jqc69AAAAAAAAAABGE08+XtnmPjcLyTwsU6K+qizRukYM2rwAAAAAAAAAAA3VDT4u0bQ7/adRvQodv7t4l0U913iuvAAAgD8AAIA/mr0iPO8jCD+eEUs+aSNOvtqCiD17o5e8AAAAAAAAAACAdf09L88SPV7nDb7C5WK+6CB1vUKKxzwAAAAAAAAAAKbQ/r0vPLM/hi+uvhFDwL4R1Cy+trFTvgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "", ":serialized:": "gAWVchAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI3lUPmIfob0CUhpRSlIwBbJRNRwGMAXSUR0CUXG06o2n9dX2UKGgGaAloD0MIJ/kRv+JHbECUhpRSlGgVTS0BaBZHQJRc8yuZCv51fZQoaAZoCWgPQwgxe9l22p5tQJSGlFKUaBVNOwFoFkdAlF0XG8274HV9lChoBmgJaA9DCNIYraMqH3BAlIaUUpRoFU0uAWgWR0CUXa+mm+CcdX2UKGgGaAloD0MIJlRweEEbbkCUhpRSlGgVTXQBaBZHQJRd9bfP5YZ1fZQoaAZoCWgPQwgNG2X9pgJyQJSGlFKUaBVNHgFoFkdAlF5XKB/ZunV9lChoBmgJaA9DCCHmkqqtRHFAlIaUUpRoFU0nAWgWR0CUXsU+s5n2dX2UKGgGaAloD0MIpS4Zx8hncECUhpRSlGgVTSQBaBZHQJRe+LhrFfl1fZQoaAZoCWgPQwj8VYDvdnBwQJSGlFKUaBVNJAFoFkdAlGDdJWeYlnV9lChoBmgJaA9DCN19jo8Wgm1AlIaUUpRoFU0fAWgWR0CUYVfe1rqMdX2UKGgGaAloD0MIndfYJapeb0CUhpRSlGgVTQwBaBZHQJRh5+WnjyZ1fZQoaAZoCWgPQwht5/upMZtwQJSGlFKUaBVNQAFoFkdAlGUoMOPNmnV9lChoBmgJaA9DCHgKuVJPX3BAlIaUUpRoFU0eAWgWR0CUZ0UAT7EYdX2UKGgGaAloD0MIPBbbpGJBcECUhpRSlGgVTSYBaBZHQJRoIJF9a2Z1fZQoaAZoCWgPQwgSTDWzlp9tQJSGlFKUaBVNHAFoFkdAlGhXEhq0t3V9lChoBmgJaA9DCLrcYKjDpjtAlIaUUpRoFUuvaBZHQJRpvyd4FA51fZQoaAZoCWgPQwgLQQ5KmKNtQJSGlFKUaBVNLQFoFkdAlGpPdEb5unV9lChoBmgJaA9DCPEvgsZM9XBAlIaUUpRoFU0cAWgWR0CUauZML4N7dX2UKGgGaAloD0MI9Pxpo/pHckCUhpRSlGgVS+5oFkdAlGt7nHNorXV9lChoBmgJaA9DCElNu5hmVXFAlIaUUpRoFU1NAWgWR0CUbGLNfPX1dX2UKGgGaAloD0MI5KPFGUOOcECUhpRSlGgVTXUBaBZHQJRskipvP1N1fZQoaAZoCWgPQwjmkqrtJt5sQJSGlFKUaBVN7wFoFkdAlG15LytmtnV9lChoBmgJaA9DCPsEUIwscm1AlIaUUpRoFU19AWgWR0CUbbY6GQCCdX2UKGgGaAloD0MI9Z1flKAIckCUhpRSlGgVTRIBaBZHQJRtuTUy57R1fZQoaAZoCWgPQwgKMCx/vkFtQJSGlFKUaBVNHAFoFkdAlHREOEug6HV9lChoBmgJaA9DCJhQweGFwG9AlIaUUpRoFU1eAWgWR0CUdWYsNDtxdX2UKGgGaAloD0MIUn+9wgKfcUCUhpRSlGgVTSYBaBZHQJR1s4KhL5B1fZQoaAZoCWgPQwipM/eQ8CdyQJSGlFKUaBVNRgFoFkdAlHeTe40/GHV9lChoBmgJaA9DCOTYeobwjHJAlIaUUpRoFUv/aBZHQJR4IbuMMql1fZQoaAZoCWgPQwh1VgvssTJvQJSGlFKUaBVNKgFoFkdAlHgkjkdWAHV9lChoBmgJaA9DCDY656c4x3FAlIaUUpRoFU0/AWgWR0CUeJ3W4EwGdX2UKGgGaAloD0MI1VktsMeKYECUhpRSlGgVTegDaBZHQJR4zhxYJVt1fZQoaAZoCWgPQwgJ4GbxIqpyQJSGlFKUaBVNOwFoFkdAlHmBqCYkV3V9lChoBmgJaA9DCCF4fHvXX2xAlIaUUpRoFU0ZAWgWR0CUeY2icoYvdX2UKGgGaAloD0MIQ6m9iHYBcECUhpRSlGgVTREBaBZHQJR6TYsd1dR1fZQoaAZoCWgPQwh1V3bB4AFwQJSGlFKUaBVNLgFoFkdAlHt5swco6XV9lChoBmgJaA9DCFHAdjBibm5AlIaUUpRoFU04AWgWR0CUe6HYHxBmdX2UKGgGaAloD0MIqWxYU9lIckCUhpRSlGgVTSgBaBZHQJSCu6BiCrd1fZQoaAZoCWgPQwjr4ctEES9vQJSGlFKUaBVNJAFoFkdAlILXnZCfH3V9lChoBmgJaA9DCEBOmDDaPXBAlIaUUpRoFU02AmgWR0CUhXdcjZ+QdX2UKGgGaAloD0MIij+KOnOKbkCUhpRSlGgVTXEBaBZHQJSFoIhQm/p1fZQoaAZoCWgPQwi29dN/1oJxQJSGlFKUaBVNNwFoFkdAlIZwtnPE9HV9lChoBmgJaA9DCHF0le4uP2xAlIaUUpRoFU06AWgWR0CUhpsMy8BddX2UKGgGaAloD0MIXCGsxlLNcECUhpRSlGgVTS4BaBZHQJSGuDFqBVd1fZQoaAZoCWgPQwjpmV5irPJsQJSGlFKUaBVNNQFoFkdAlIbdsBQvYnV9lChoBmgJaA9DCF+1MuGXVFhAlIaUUpRoFU3oA2gWR0CUhwtqYZ2qdX2UKGgGaAloD0MIl3DoLd4DckCUhpRSlGgVTVQBaBZHQJSHSTyJ9Ap1fZQoaAZoCWgPQwhi26LMRt5xQJSGlFKUaBVNMwFoFkdAlIeKWw/xD3V9lChoBmgJaA9DCJ+RCI1gcXJAlIaUUpRoFU06AWgWR0CUh9BwMpgDdX2UKGgGaAloD0MINum2RK6abECUhpRSlGgVTUYBaBZHQJSeLfl6qsF1fZQoaAZoCWgPQwiYM9sVepZvQJSGlFKUaBVNOAFoFkdAlJ7TWbwz+HV9lChoBmgJaA9DCNasM74vL1FAlIaUUpRoFU3oA2gWR0CUn8/JvHcUdX2UKGgGaAloD0MIx0lh3mOEb0CUhpRSlGgVTVsBaBZHQJSf0ZflZHN1fZQoaAZoCWgPQwgcKPBOPlk2QJSGlFKUaBVL02gWR0CUoJJ2+wkgdX2UKGgGaAloD0MINWJmn4c1ckCUhpRSlGgVTQsBaBZHQJSkV2q1gIB1fZQoaAZoCWgPQwgmUwWjUkJyQJSGlFKUaBVNEAFoFkdAlKRwGbCrLnV9lChoBmgJaA9DCJ/pJcYyYnFAlIaUUpRoFU0ZAWgWR0CUpZc3l0YCdX2UKGgGaAloD0MI8wGBzqS+c0CUhpRSlGgVTRoBaBZHQJSm0Jswco91fZQoaAZoCWgPQwg9mBQfX21xQJSGlFKUaBVNMAFoFkdAlKbUCzTnaHV9lChoBmgJaA9DCD1H5LvUNXJAlIaUUpRoFU0dAWgWR0CUp0pfx+a0dX2UKGgGaAloD0MID2PS30tdcUCUhpRSlGgVTQABaBZHQJSnVjMFEAp1fZQoaAZoCWgPQwhHjnQGhrNwQJSGlFKUaBVNMAFoFkdAlKd3B+F10XV9lChoBmgJaA9DCE2+2eZG7W9AlIaUUpRoFU1IAWgWR0CUqACU5dWydX2UKGgGaAloD0MIrTB9r+EZc0CUhpRSlGgVTUsBaBZHQJSoRVAAyVR1fZQoaAZoCWgPQwh+qZ83FShsQJSGlFKUaBVNGwFoFkdAlKpaxgRbr3V9lChoBmgJaA9DCF7VWS0wS3BAlIaUUpRoFU0sAWgWR0CUqxK3uuzQdX2UKGgGaAloD0MI/RAbLJzzZECUhpRSlGgVTbYBaBZHQJSsTCgsbvR1fZQoaAZoCWgPQwgt6/6xEAlxQJSGlFKUaBVNOQFoFkdAlKzIX9BKMHV9lChoBmgJaA9DCKSJd4AnrHJAlIaUUpRoFUvyaBZHQJSuLamGdqd1fZQoaAZoCWgPQwgb9RCN7jZBQJSGlFKUaBVL1mgWR0CUr1fKZDzAdX2UKGgGaAloD0MIFY21v7OHRUCUhpRSlGgVS/RoFkdAlK+C17Y023V9lChoBmgJaA9DCINtxJPd9EJAlIaUUpRoFUvKaBZHQJSwCaScLBt1fZQoaAZoCWgPQwjzdoTTAqhvQJSGlFKUaBVNLwFoFkdAlLDJblijL3V9lChoBmgJaA9DCL1UbMxrmnFAlIaUUpRoFU0wAWgWR0CUs8j3225QdX2UKGgGaAloD0MIpdk8DoN7bUCUhpRSlGgVS/RoFkdAlLSdcSoOx3V9lChoBmgJaA9DCGaEtweh/HBAlIaUUpRoFU01AWgWR0CUtSZwn6VMdX2UKGgGaAloD0MIJ02Dovl/cUCUhpRSlGgVTU4BaBZHQJS1MoOQQtl1fZQoaAZoCWgPQwi4O2u33WBxQJSGlFKUaBVNXgFoFkdAlLVcVpKzzHV9lChoBmgJaA9DCAclzLQ9QHBAlIaUUpRoFU12AWgWR0CUtvK/mDDkdX2UKGgGaAloD0MIHqZ9c78YcECUhpRSlGgVS/toFkdAlLdcsDnvD3V9lChoBmgJaA9DCBXj/E0o63BAlIaUUpRoFU06AWgWR0CUuVQxN7BwdX2UKGgGaAloD0MIWdqpuVyYckCUhpRSlGgVTVsBaBZHQJS5ddhRZU11fZQoaAZoCWgPQwiQZiyaDpNxQJSGlFKUaBVNMgFoFkdAlLsSKR+z+nV9lChoBmgJaA9DCKN4lbWN1HFAlIaUUpRoFU0TAWgWR0CUux6T4cm0dX2UKGgGaAloD0MImZtvRHd0cECUhpRSlGgVTRkBaBZHQJS7NKODJ2d1fZQoaAZoCWgPQwj6t8t+3aJuQJSGlFKUaBVNLAFoFkdAlLybD/EOy3V9lChoBmgJaA9DCKoNTkQ/XXHAlIaUUpRoFUudaBZHQJS9Nx6v7nB1fZQoaAZoCWgPQwhQqRJl76dxQJSGlFKUaBVNLQFoFkdAlL1fDgqEvnV9lChoBmgJaA9DCNoB1xWzuGZAlIaUUpRoFU0eA2gWR0CUvkMvRJEqdX2UKGgGaAloD0MI5Lz/jxMJbkCUhpRSlGgVTSEBaBZHQJS/goRZlnR1fZQoaAZoCWgPQwg5YcJoVj5LQJSGlFKUaBVN6ANoFkdAlMBzc2zfJnV9lChoBmgJaA9DCGwm32xzfFBAlIaUUpRoFUvkaBZHQJTAfrIHTql1fZQoaAZoCWgPQwhiSbn7HARwQJSGlFKUaBVNHQFoFkdAlMCc4gieNHV9lChoBmgJaA9DCK6dKAkJjG9AlIaUUpRoFU04AWgWR0CUwRbKifxudX2UKGgGaAloD0MIks7AyMt7cECUhpRSlGgVTTcBaBZHQJTBcpqh11Z1fZQoaAZoCWgPQwjMXUvIR8ZwQJSGlFKUaBVNRgFoFkdAlMIZzLfUF3V9lChoBmgJaA9DCA3/6QbK1nFAlIaUUpRoFUv0aBZHQJTEJrFfiP11fZQoaAZoCWgPQwj7A+W2fQ8iQJSGlFKUaBVLxWgWR0CUxGzQeFL4dX2UKGgGaAloD0MIj95wHzlQb0CUhpRSlGgVS/loFkdAlMR3VLBbfXV9lChoBmgJaA9DCANckC3LkHFAlIaUUpRoFU0qAWgWR0CUxJtYjjaPdWUu"}, "ep_success_buffer": {":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 372, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 6, "clip_range": {":type:": "", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "False", "Numpy": "1.21.6", "Gym": "0.17.3"}}