File size: 1,946 Bytes
1f6823f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ed22e22
1f6823f
 
 
 
 
 
 
 
 
ed22e22
 
 
1f6823f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ed22e22
 
 
1f6823f
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
---
license: mit
base_model: roberta-base-openai-detector
tags:
- generated_from_trainer
datasets:
- au_tex_tification
metrics:
- accuracy
model-index:
- name: roberta-base-openai-detector-autextification
  results:
  - task:
      name: Text Classification
      type: text-classification
    dataset:
      name: au_tex_tification
      type: au_tex_tification
      config: detection_en
      split: train
      args: detection_en
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.6
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# roberta-base-openai-detector-autextification

This model is a fine-tuned version of [roberta-base-openai-detector](https://huggingface.co/roberta-base-openai-detector) on the au_tex_tification dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7155
- Accuracy: 0.6
- Roc Auc: 0.6354

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy | Roc Auc |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-------:|
| 1.0975        | 1.0   | 10   | 0.7345          | 0.65     | 0.5417  |
| 0.4022        | 2.0   | 20   | 0.6266          | 0.65     | 0.6667  |
| 0.1635        | 3.0   | 30   | 0.7155          | 0.6      | 0.6354  |


### Framework versions

- Transformers 4.35.0
- Pytorch 2.0.0
- Datasets 2.1.0
- Tokenizers 0.14.1