aristizabal95 commited on
Commit
b6b8d00
·
1 Parent(s): 6e56304

First commit with trained agent

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 258.10 +/- 20.44
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f17a457e670>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f17a457e700>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f17a457e790>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f17a457e820>", "_build": "<function ActorCriticPolicy._build at 0x7f17a457e8b0>", "forward": "<function ActorCriticPolicy.forward at 0x7f17a457e940>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f17a457e9d0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f17a457ea60>", "_predict": "<function ActorCriticPolicy._predict at 0x7f17a457eaf0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f17a457eb80>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f17a457ec10>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f17a457eca0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f17a457a6f0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1673562980939978148, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAMavPz4klok95qNhvnDcRL6SrC28mnEevAAAAAAAAAAAgOQOPlUqqT6ubia+pPpnvjGPizs149+6AAAAAAAAAACmV6I9w+k/uqI7kbfaKTYyopGWu2tzpzYAAAAAAAAAAA1l6T1amAM/2p5CvYxCQL6q28w8ybPLvAAAAAAAAAAAbUFsvqiFyD6Y3Ns922guvjsrWL1olHg8AAAAAAAAAABaJLq9H5KMu7rz5D2Tna69my3rvFLOj74AAIA/AACAP0p8qD68OmQ/6N/ZPMT/g75oCBQ+BerXvAAAAAAAAAAApiEpvqUanj8jcLK+9jbDvjIGDb7M77A7AAAAAAAAAACaGY07Q1gevE4y6j0WmCM9KC99veAIBD4AAIA/AACAP6BuWr5k0VU/wDksvgoPpb5ne8i9auGXOwAAAAAAAAAAAGhvvj3Tnz8yWgO/7ZrKvm+tQL7UOD+7AAAAAAAAAABgSzq+y9x/P9Y7P76xOKa+/qfQvckppLwAAAAAAAAAANMDJD5DSkS81JO1O4I9H7oG9au95oACuwAAgD8AAIA/M2NfvAG1Kj5iPkM8jx48vpr0PrsUIks8AAAAAAAAAADN8nu9xS+mPA7o9D0F7R6++658uH4PHb0AAAAAAAAAAJraTT32rFy6lpWWO9kdpTm9v6c6GEErugAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVgRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIuYrFbwozcECUhpRSlIwBbJRNJQGMAXSUR0ChGe4lhPTHdX2UKGgGaAloD0MIHo1D/a5qb0CUhpRSlGgVTTMBaBZHQKEklzdUKiR1fZQoaAZoCWgPQwhlNPJ5BSZwQJSGlFKUaBVNKwFoFkdAoSS41YQrc3V9lChoBmgJaA9DCAAce/ZcpGxAlIaUUpRoFU1EAWgWR0ChJL5OBUaRdX2UKGgGaAloD0MII2qiz8dxcECUhpRSlGgVTS4BaBZHQKEkw8jAzpJ1fZQoaAZoCWgPQwisxacA2LdwQJSGlFKUaBVNGQFoFkdAoST5w2l2vHV9lChoBmgJaA9DCGHfTiLC2GxAlIaUUpRoFU1QAWgWR0ChJWFIEr5JdX2UKGgGaAloD0MIjlw3pbyHbkCUhpRSlGgVTVIBaBZHQKElyC7K7qZ1fZQoaAZoCWgPQwjfiVkvRv1wQJSGlFKUaBVNNgFoFkdAoSXefseGPHV9lChoBmgJaA9DCPm7d9SYimxAlIaUUpRoFU05AWgWR0ChJh0g8r7PdX2UKGgGaAloD0MIUBxAvy/WcECUhpRSlGgVTUwBaBZHQKEmZWjGkvd1fZQoaAZoCWgPQwiIvruVZd9wQJSGlFKUaBVNKwFoFkdAoSayCxu89XV9lChoBmgJaA9DCFmFzQAXB25AlIaUUpRoFU07AWgWR0ChJxGKqGUOdX2UKGgGaAloD0MI2WDhJI1cckCUhpRSlGgVTYQBaBZHQKEnIwN9YwJ1fZQoaAZoCWgPQwi1pnnHKc1vQJSGlFKUaBVNMgFoFkdAoSegTbnHN3V9lChoBmgJaA9DCMaKGkzDbW1AlIaUUpRoFU0uAWgWR0ChJ8J84PwvdX2UKGgGaAloD0MI83LYfcdqcUCUhpRSlGgVTSABaBZHQKEoXJOFg2J1fZQoaAZoCWgPQwhjCACOvR1uQJSGlFKUaBVNKAFoFkdAoSnHTd+G5HV9lChoBmgJaA9DCB09fm8TZXBAlIaUUpRoFU0yAWgWR0ChKd7yhBZ7dX2UKGgGaAloD0MI+Db92Q+xb0CUhpRSlGgVTTQBaBZHQKEqDOWSlnB1fZQoaAZoCWgPQwgQkgVMoD5wQJSGlFKUaBVNNwFoFkdAoSpf+n62v3V9lChoBmgJaA9DCLFR1m8mj29AlIaUUpRoFU1cAWgWR0ChKuW0qpcYdX2UKGgGaAloD0MIhZUKKqoCcECUhpRSlGgVTUMBaBZHQKErE9U0elt1fZQoaAZoCWgPQwiQozmy8u5uQJSGlFKUaBVNOgFoFkdAoStU3sHB13V9lChoBmgJaA9DCOXuc3w05G1AlIaUUpRoFU0pAWgWR0ChK6dB8hLXdX2UKGgGaAloD0MIRtJu9LFrbkCUhpRSlGgVTUoBaBZHQKEru/ATIvJ1fZQoaAZoCWgPQwiPNLitrYdwQJSGlFKUaBVNWwFoFkdAoSxSCWeHz3V9lChoBmgJaA9DCCic3VomT29AlIaUUpRoFU0vAWgWR0ChLJ6XjU/fdX2UKGgGaAloD0MIa32R0JZeb0CUhpRSlGgVTUsBaBZHQKEsrKAavRt1fZQoaAZoCWgPQwjsbMg/s9ZsQJSGlFKUaBVNMwFoFkdAoSzAm/nGKnV9lChoBmgJaA9DCHU5JSCm229AlIaUUpRoFU1eAWgWR0ChLe8zAN5MdX2UKGgGaAloD0MIWd3qOSnxcUCUhpRSlGgVTWIBaBZHQKEuKn4wh4d1fZQoaAZoCWgPQwjmXIqrSjtyQJSGlFKUaBVNQQFoFkdAoS5KLhrFfnV9lChoBmgJaA9DCNKMRdNZS2tAlIaUUpRoFU03AWgWR0ChL3Gplz2fdX2UKGgGaAloD0MIWK63zdSEcECUhpRSlGgVTS8BaBZHQKEviwyIpH91fZQoaAZoCWgPQwjCNXf0v9huQJSGlFKUaBVNSAFoFkdAoS/XMINVinV9lChoBmgJaA9DCDrObcI97W1AlIaUUpRoFU0rAWgWR0ChMD/r0J4TdX2UKGgGaAloD0MI8bioFhHDb0CUhpRSlGgVTSsBaBZHQKEw/wI+nqF1fZQoaAZoCWgPQwhXPsvzYEpvQJSGlFKUaBVNTQFoFkdAoTES1uzhP3V9lChoBmgJaA9DCIF4Xb9gTXFAlIaUUpRoFU1yAWgWR0ChMSCT+vQodX2UKGgGaAloD0MI3V897tvOb0CUhpRSlGgVTS8BaBZHQKExJPkaMrF1fZQoaAZoCWgPQwjS4oxhToxxQJSGlFKUaBVNVQFoFkdAoTFkeGO+7HV9lChoBmgJaA9DCEDa/wDrq3FAlIaUUpRoFU0hAWgWR0ChMZjZcs19dX2UKGgGaAloD0MIHEC/798dckCUhpRSlGgVTTgBaBZHQKExs0pEx7B1fZQoaAZoCWgPQwhVo1cDFK5wQJSGlFKUaBVNSAFoFkdAoTI5vYODrnV9lChoBmgJaA9DCDiGAODYC25AlIaUUpRoFU1ZAWgWR0ChMpPq1PWQdX2UKGgGaAloD0MIbHu7JbmPb0CUhpRSlGgVTS0BaBZHQKEza4GUwBZ1fZQoaAZoCWgPQwjJIHcRJihxQJSGlFKUaBVNVgFoFkdAoTPI9mpVCHV9lChoBmgJaA9DCIvBw7SvfHFAlIaUUpRoFU1VAWgWR0ChM/3Roh6jdX2UKGgGaAloD0MIBW9Io4L+a0CUhpRSlGgVTUIBaBZHQKE1Iqaw2VF1fZQoaAZoCWgPQwjQDU3ZKTpyQJSGlFKUaBVNSAFoFkdAoTUo1JlJ6XV9lChoBmgJaA9DCFhzgGAOV29AlIaUUpRoFU0gAWgWR0ChNTMo+fRNdX2UKGgGaAloD0MI9dkB15XGbECUhpRSlGgVTTYBaBZHQKE1N/x2B8R1fZQoaAZoCWgPQwjJdr6fmn9sQJSGlFKUaBVNMQFoFkdAoT+93EAHV3V9lChoBmgJaA9DCEgVxassC2tAlIaUUpRoFU0tAWgWR0ChQAJ5NXYEdX2UKGgGaAloD0MIr0LKT6oOckCUhpRSlGgVTVUBaBZHQKFAS8OCoTB1fZQoaAZoCWgPQwibjgBu1iFwQJSGlFKUaBVNUgFoFkdAoUBReb/ff3V9lChoBmgJaA9DCFqAttUsWW1AlIaUUpRoFU1TAWgWR0ChQGdQoCuEdX2UKGgGaAloD0MIPEz75r4ccECUhpRSlGgVTUgBaBZHQKFAsz2vjfh1fZQoaAZoCWgPQwgWbvlIikhwQJSGlFKUaBVNSgFoFkdAoUDTwBo243V9lChoBmgJaA9DCAMlBRbAaG5AlIaUUpRoFU03AWgWR0ChQQqL0jC6dX2UKGgGaAloD0MIF5zB32+JcUCUhpRSlGgVTSoBaBZHQKFB4BiCrcV1fZQoaAZoCWgPQwjMCG8PQuRwQJSGlFKUaBVNLgFoFkdAoUJBBcAzYXV9lChoBmgJaA9DCPzIrUl3oXJAlIaUUpRoFU02AWgWR0ChQpYLkS26dX2UKGgGaAloD0MIRnu8kI5hckCUhpRSlGgVTRIBaBZHQKFC8nLJSzh1fZQoaAZoCWgPQwjcvdwnRzttQJSGlFKUaBVNQAFoFkdAoUPWpMpPRHV9lChoBmgJaA9DCPT5KCPuGHFAlIaUUpRoFU0/AWgWR0ChQ9c7p3X7dX2UKGgGaAloD0MIgPEMGnp9cUCUhpRSlGgVTUYBaBZHQKFD5AgPmPp1fZQoaAZoCWgPQwhgyVUsfuZwQJSGlFKUaBVNKAFoFkdAoUS8IZ62OXV9lChoBmgJaA9DCB/bMuCsM29AlIaUUpRoFU03AWgWR0ChRL9nscABdX2UKGgGaAloD0MI5Lz/jxPibECUhpRSlGgVTTEBaBZHQKFFKrGza9N1fZQoaAZoCWgPQwgtBaT9jwxxQJSGlFKUaBVNSwFoFkdAoUW3JeVs13V9lChoBmgJaA9DCJilnZpL+G5AlIaUUpRoFU0wAWgWR0ChRcZylvZRdX2UKGgGaAloD0MI6j4AqY24cUCUhpRSlGgVTV0BaBZHQKFF7LEk0Jp1fZQoaAZoCWgPQwifyf55mnBwQJSGlFKUaBVNMwFoFkdAoUYXzUZvUHV9lChoBmgJaA9DCAZn8PcLUXBAlIaUUpRoFU1WAWgWR0ChRkINNJvpdX2UKGgGaAloD0MIq0AtBk/ccUCUhpRSlGgVTTABaBZHQKFHdYWcjJN1fZQoaAZoCWgPQwjZX3ZPHhhwQJSGlFKUaBVNVgFoFkdAoUe1dHDrJXV9lChoBmgJaA9DCJFDxM1pmHFAlIaUUpRoFU08AWgWR0ChSAmEXcgydX2UKGgGaAloD0MIFQFO7+K6akCUhpRSlGgVTTgBaBZHQKFJSPKdQO51fZQoaAZoCWgPQwhpN/qYz2RxQJSGlFKUaBVNXAFoFkdAoUoNjZtelnV9lChoBmgJaA9DCKev52vWD3BAlIaUUpRoFU1jAWgWR0ChSkXb212JdX2UKGgGaAloD0MIOdOE7Sf4cECUhpRSlGgVTUoBaBZHQKFK0DDjzZp1fZQoaAZoCWgPQwijO4idqaNvQJSGlFKUaBVNUQFoFkdAoUrwdhiLEXV9lChoBmgJaA9DCPxUFRqIiW1AlIaUUpRoFU1MAWgWR0ChS1aS1Vo6dX2UKGgGaAloD0MIPIcyVMU3cUCUhpRSlGgVTTUBaBZHQKFLfDhtLth1fZQoaAZoCWgPQwi/1M+binxxQJSGlFKUaBVNPAFoFkdAoUwC8QI2O3V9lChoBmgJaA9DCMXGvI64onFAlIaUUpRoFU1RAWgWR0ChTDvGACnxdX2UKGgGaAloD0MIKII4Dyc5cUCUhpRSlGgVTX4BaBZHQKFM5a8pTdd1fZQoaAZoCWgPQwho6J/g4hBxQJSGlFKUaBVNagFoFkdAoU0QEIPbwnV9lChoBmgJaA9DCF4robsk1W9AlIaUUpRoFU0oAWgWR0ChTTXvYvnKdX2UKGgGaAloD0MIgEkqU8xtY0CUhpRSlGgVTegDaBZHQKFNoDK5kLB1fZQoaAZoCWgPQwgk7UYf831yQJSGlFKUaBVNPwFoFkdAoU4hhpg1FnV9lChoBmgJaA9DCFTiOsZV8HBAlIaUUpRoFU1bAWgWR0ChTkiudPLxdX2UKGgGaAloD0MI8rbSa7PDcECUhpRSlGgVTS0BaBZHQKFO4YrrgO11fZQoaAZoCWgPQwjg1t081ZBvQJSGlFKUaBVNMAFoFkdAoU++mgrYoXV9lChoBmgJaA9DCJQyqaENH29AlIaUUpRoFU1DAWgWR0ChT+hsqJ/HdX2UKGgGaAloD0MIe7/RjtuBcUCUhpRSlGgVTTsBaBZHQKFQYx8D0UZ1fZQoaAZoCWgPQwjf/fFeNVJwQJSGlFKUaBVNOAFoFkdAoVDMzCUHIXV9lChoBmgJaA9DCHoZxXJLK3BAlIaUUpRoFU0wAWgWR0ChUM0puuRtdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 1000, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 128, "n_epochs": 8, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.27 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
first_attempt.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:292452f15ddecfd41e45140c9184fd5d24e4144032f95971b1eac613e65ec1c3
3
+ size 147425
first_attempt/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
first_attempt/data ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f17a457e670>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f17a457e700>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f17a457e790>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f17a457e820>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f17a457e8b0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f17a457e940>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f17a457e9d0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f17a457ea60>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f17a457eaf0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f17a457eb80>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f17a457ec10>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f17a457eca0>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc_data object at 0x7f17a457a6f0>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "observation_space": {
25
+ ":type:": "<class 'gym.spaces.box.Box'>",
26
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
27
+ "dtype": "float32",
28
+ "_shape": [
29
+ 8
30
+ ],
31
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
32
+ "high": "[inf inf inf inf inf inf inf inf]",
33
+ "bounded_below": "[False False False False False False False False]",
34
+ "bounded_above": "[False False False False False False False False]",
35
+ "_np_random": null
36
+ },
37
+ "action_space": {
38
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
39
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
40
+ "n": 4,
41
+ "_shape": [],
42
+ "dtype": "int64",
43
+ "_np_random": null
44
+ },
45
+ "n_envs": 16,
46
+ "num_timesteps": 1015808,
47
+ "_total_timesteps": 1000000,
48
+ "_num_timesteps_at_start": 0,
49
+ "seed": null,
50
+ "action_noise": null,
51
+ "start_time": 1673562980939978148,
52
+ "learning_rate": 0.0003,
53
+ "tensorboard_log": null,
54
+ "lr_schedule": {
55
+ ":type:": "<class 'function'>",
56
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
57
+ },
58
+ "_last_obs": {
59
+ ":type:": "<class 'numpy.ndarray'>",
60
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAMavPz4klok95qNhvnDcRL6SrC28mnEevAAAAAAAAAAAgOQOPlUqqT6ubia+pPpnvjGPizs149+6AAAAAAAAAACmV6I9w+k/uqI7kbfaKTYyopGWu2tzpzYAAAAAAAAAAA1l6T1amAM/2p5CvYxCQL6q28w8ybPLvAAAAAAAAAAAbUFsvqiFyD6Y3Ns922guvjsrWL1olHg8AAAAAAAAAABaJLq9H5KMu7rz5D2Tna69my3rvFLOj74AAIA/AACAP0p8qD68OmQ/6N/ZPMT/g75oCBQ+BerXvAAAAAAAAAAApiEpvqUanj8jcLK+9jbDvjIGDb7M77A7AAAAAAAAAACaGY07Q1gevE4y6j0WmCM9KC99veAIBD4AAIA/AACAP6BuWr5k0VU/wDksvgoPpb5ne8i9auGXOwAAAAAAAAAAAGhvvj3Tnz8yWgO/7ZrKvm+tQL7UOD+7AAAAAAAAAABgSzq+y9x/P9Y7P76xOKa+/qfQvckppLwAAAAAAAAAANMDJD5DSkS81JO1O4I9H7oG9au95oACuwAAgD8AAIA/M2NfvAG1Kj5iPkM8jx48vpr0PrsUIks8AAAAAAAAAADN8nu9xS+mPA7o9D0F7R6++658uH4PHb0AAAAAAAAAAJraTT32rFy6lpWWO9kdpTm9v6c6GEErugAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
61
+ },
62
+ "_last_episode_starts": {
63
+ ":type:": "<class 'numpy.ndarray'>",
64
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
65
+ },
66
+ "_last_original_obs": null,
67
+ "_episode_num": 0,
68
+ "use_sde": false,
69
+ "sde_sample_freq": -1,
70
+ "_current_progress_remaining": -0.015808000000000044,
71
+ "ep_info_buffer": {
72
+ ":type:": "<class 'collections.deque'>",
73
+ ":serialized:": "gAWVgRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIuYrFbwozcECUhpRSlIwBbJRNJQGMAXSUR0ChGe4lhPTHdX2UKGgGaAloD0MIHo1D/a5qb0CUhpRSlGgVTTMBaBZHQKEklzdUKiR1fZQoaAZoCWgPQwhlNPJ5BSZwQJSGlFKUaBVNKwFoFkdAoSS41YQrc3V9lChoBmgJaA9DCAAce/ZcpGxAlIaUUpRoFU1EAWgWR0ChJL5OBUaRdX2UKGgGaAloD0MII2qiz8dxcECUhpRSlGgVTS4BaBZHQKEkw8jAzpJ1fZQoaAZoCWgPQwisxacA2LdwQJSGlFKUaBVNGQFoFkdAoST5w2l2vHV9lChoBmgJaA9DCGHfTiLC2GxAlIaUUpRoFU1QAWgWR0ChJWFIEr5JdX2UKGgGaAloD0MIjlw3pbyHbkCUhpRSlGgVTVIBaBZHQKElyC7K7qZ1fZQoaAZoCWgPQwjfiVkvRv1wQJSGlFKUaBVNNgFoFkdAoSXefseGPHV9lChoBmgJaA9DCPm7d9SYimxAlIaUUpRoFU05AWgWR0ChJh0g8r7PdX2UKGgGaAloD0MIUBxAvy/WcECUhpRSlGgVTUwBaBZHQKEmZWjGkvd1fZQoaAZoCWgPQwiIvruVZd9wQJSGlFKUaBVNKwFoFkdAoSayCxu89XV9lChoBmgJaA9DCFmFzQAXB25AlIaUUpRoFU07AWgWR0ChJxGKqGUOdX2UKGgGaAloD0MI2WDhJI1cckCUhpRSlGgVTYQBaBZHQKEnIwN9YwJ1fZQoaAZoCWgPQwi1pnnHKc1vQJSGlFKUaBVNMgFoFkdAoSegTbnHN3V9lChoBmgJaA9DCMaKGkzDbW1AlIaUUpRoFU0uAWgWR0ChJ8J84PwvdX2UKGgGaAloD0MI83LYfcdqcUCUhpRSlGgVTSABaBZHQKEoXJOFg2J1fZQoaAZoCWgPQwhjCACOvR1uQJSGlFKUaBVNKAFoFkdAoSnHTd+G5HV9lChoBmgJaA9DCB09fm8TZXBAlIaUUpRoFU0yAWgWR0ChKd7yhBZ7dX2UKGgGaAloD0MI+Db92Q+xb0CUhpRSlGgVTTQBaBZHQKEqDOWSlnB1fZQoaAZoCWgPQwgQkgVMoD5wQJSGlFKUaBVNNwFoFkdAoSpf+n62v3V9lChoBmgJaA9DCLFR1m8mj29AlIaUUpRoFU1cAWgWR0ChKuW0qpcYdX2UKGgGaAloD0MIhZUKKqoCcECUhpRSlGgVTUMBaBZHQKErE9U0elt1fZQoaAZoCWgPQwiQozmy8u5uQJSGlFKUaBVNOgFoFkdAoStU3sHB13V9lChoBmgJaA9DCOXuc3w05G1AlIaUUpRoFU0pAWgWR0ChK6dB8hLXdX2UKGgGaAloD0MIRtJu9LFrbkCUhpRSlGgVTUoBaBZHQKEru/ATIvJ1fZQoaAZoCWgPQwiPNLitrYdwQJSGlFKUaBVNWwFoFkdAoSxSCWeHz3V9lChoBmgJaA9DCCic3VomT29AlIaUUpRoFU0vAWgWR0ChLJ6XjU/fdX2UKGgGaAloD0MIa32R0JZeb0CUhpRSlGgVTUsBaBZHQKEsrKAavRt1fZQoaAZoCWgPQwjsbMg/s9ZsQJSGlFKUaBVNMwFoFkdAoSzAm/nGKnV9lChoBmgJaA9DCHU5JSCm229AlIaUUpRoFU1eAWgWR0ChLe8zAN5MdX2UKGgGaAloD0MIWd3qOSnxcUCUhpRSlGgVTWIBaBZHQKEuKn4wh4d1fZQoaAZoCWgPQwjmXIqrSjtyQJSGlFKUaBVNQQFoFkdAoS5KLhrFfnV9lChoBmgJaA9DCNKMRdNZS2tAlIaUUpRoFU03AWgWR0ChL3Gplz2fdX2UKGgGaAloD0MIWK63zdSEcECUhpRSlGgVTS8BaBZHQKEviwyIpH91fZQoaAZoCWgPQwjCNXf0v9huQJSGlFKUaBVNSAFoFkdAoS/XMINVinV9lChoBmgJaA9DCDrObcI97W1AlIaUUpRoFU0rAWgWR0ChMD/r0J4TdX2UKGgGaAloD0MI8bioFhHDb0CUhpRSlGgVTSsBaBZHQKEw/wI+nqF1fZQoaAZoCWgPQwhXPsvzYEpvQJSGlFKUaBVNTQFoFkdAoTES1uzhP3V9lChoBmgJaA9DCIF4Xb9gTXFAlIaUUpRoFU1yAWgWR0ChMSCT+vQodX2UKGgGaAloD0MI3V897tvOb0CUhpRSlGgVTS8BaBZHQKExJPkaMrF1fZQoaAZoCWgPQwjS4oxhToxxQJSGlFKUaBVNVQFoFkdAoTFkeGO+7HV9lChoBmgJaA9DCEDa/wDrq3FAlIaUUpRoFU0hAWgWR0ChMZjZcs19dX2UKGgGaAloD0MIHEC/798dckCUhpRSlGgVTTgBaBZHQKExs0pEx7B1fZQoaAZoCWgPQwhVo1cDFK5wQJSGlFKUaBVNSAFoFkdAoTI5vYODrnV9lChoBmgJaA9DCDiGAODYC25AlIaUUpRoFU1ZAWgWR0ChMpPq1PWQdX2UKGgGaAloD0MIbHu7JbmPb0CUhpRSlGgVTS0BaBZHQKEza4GUwBZ1fZQoaAZoCWgPQwjJIHcRJihxQJSGlFKUaBVNVgFoFkdAoTPI9mpVCHV9lChoBmgJaA9DCIvBw7SvfHFAlIaUUpRoFU1VAWgWR0ChM/3Roh6jdX2UKGgGaAloD0MIBW9Io4L+a0CUhpRSlGgVTUIBaBZHQKE1Iqaw2VF1fZQoaAZoCWgPQwjQDU3ZKTpyQJSGlFKUaBVNSAFoFkdAoTUo1JlJ6XV9lChoBmgJaA9DCFhzgGAOV29AlIaUUpRoFU0gAWgWR0ChNTMo+fRNdX2UKGgGaAloD0MI9dkB15XGbECUhpRSlGgVTTYBaBZHQKE1N/x2B8R1fZQoaAZoCWgPQwjJdr6fmn9sQJSGlFKUaBVNMQFoFkdAoT+93EAHV3V9lChoBmgJaA9DCEgVxassC2tAlIaUUpRoFU0tAWgWR0ChQAJ5NXYEdX2UKGgGaAloD0MIr0LKT6oOckCUhpRSlGgVTVUBaBZHQKFAS8OCoTB1fZQoaAZoCWgPQwibjgBu1iFwQJSGlFKUaBVNUgFoFkdAoUBReb/ff3V9lChoBmgJaA9DCFqAttUsWW1AlIaUUpRoFU1TAWgWR0ChQGdQoCuEdX2UKGgGaAloD0MIPEz75r4ccECUhpRSlGgVTUgBaBZHQKFAsz2vjfh1fZQoaAZoCWgPQwgWbvlIikhwQJSGlFKUaBVNSgFoFkdAoUDTwBo243V9lChoBmgJaA9DCAMlBRbAaG5AlIaUUpRoFU03AWgWR0ChQQqL0jC6dX2UKGgGaAloD0MIF5zB32+JcUCUhpRSlGgVTSoBaBZHQKFB4BiCrcV1fZQoaAZoCWgPQwjMCG8PQuRwQJSGlFKUaBVNLgFoFkdAoUJBBcAzYXV9lChoBmgJaA9DCPzIrUl3oXJAlIaUUpRoFU02AWgWR0ChQpYLkS26dX2UKGgGaAloD0MIRnu8kI5hckCUhpRSlGgVTRIBaBZHQKFC8nLJSzh1fZQoaAZoCWgPQwjcvdwnRzttQJSGlFKUaBVNQAFoFkdAoUPWpMpPRHV9lChoBmgJaA9DCPT5KCPuGHFAlIaUUpRoFU0/AWgWR0ChQ9c7p3X7dX2UKGgGaAloD0MIgPEMGnp9cUCUhpRSlGgVTUYBaBZHQKFD5AgPmPp1fZQoaAZoCWgPQwhgyVUsfuZwQJSGlFKUaBVNKAFoFkdAoUS8IZ62OXV9lChoBmgJaA9DCB/bMuCsM29AlIaUUpRoFU03AWgWR0ChRL9nscABdX2UKGgGaAloD0MI5Lz/jxPibECUhpRSlGgVTTEBaBZHQKFFKrGza9N1fZQoaAZoCWgPQwgtBaT9jwxxQJSGlFKUaBVNSwFoFkdAoUW3JeVs13V9lChoBmgJaA9DCJilnZpL+G5AlIaUUpRoFU0wAWgWR0ChRcZylvZRdX2UKGgGaAloD0MI6j4AqY24cUCUhpRSlGgVTV0BaBZHQKFF7LEk0Jp1fZQoaAZoCWgPQwifyf55mnBwQJSGlFKUaBVNMwFoFkdAoUYXzUZvUHV9lChoBmgJaA9DCAZn8PcLUXBAlIaUUpRoFU1WAWgWR0ChRkINNJvpdX2UKGgGaAloD0MIq0AtBk/ccUCUhpRSlGgVTTABaBZHQKFHdYWcjJN1fZQoaAZoCWgPQwjZX3ZPHhhwQJSGlFKUaBVNVgFoFkdAoUe1dHDrJXV9lChoBmgJaA9DCJFDxM1pmHFAlIaUUpRoFU08AWgWR0ChSAmEXcgydX2UKGgGaAloD0MIFQFO7+K6akCUhpRSlGgVTTgBaBZHQKFJSPKdQO51fZQoaAZoCWgPQwhpN/qYz2RxQJSGlFKUaBVNXAFoFkdAoUoNjZtelnV9lChoBmgJaA9DCKev52vWD3BAlIaUUpRoFU1jAWgWR0ChSkXb212JdX2UKGgGaAloD0MIOdOE7Sf4cECUhpRSlGgVTUoBaBZHQKFK0DDjzZp1fZQoaAZoCWgPQwijO4idqaNvQJSGlFKUaBVNUQFoFkdAoUrwdhiLEXV9lChoBmgJaA9DCPxUFRqIiW1AlIaUUpRoFU1MAWgWR0ChS1aS1Vo6dX2UKGgGaAloD0MIPIcyVMU3cUCUhpRSlGgVTTUBaBZHQKFLfDhtLth1fZQoaAZoCWgPQwi/1M+binxxQJSGlFKUaBVNPAFoFkdAoUwC8QI2O3V9lChoBmgJaA9DCMXGvI64onFAlIaUUpRoFU1RAWgWR0ChTDvGACnxdX2UKGgGaAloD0MIKII4Dyc5cUCUhpRSlGgVTX4BaBZHQKFM5a8pTdd1fZQoaAZoCWgPQwho6J/g4hBxQJSGlFKUaBVNagFoFkdAoU0QEIPbwnV9lChoBmgJaA9DCF4robsk1W9AlIaUUpRoFU0oAWgWR0ChTTXvYvnKdX2UKGgGaAloD0MIgEkqU8xtY0CUhpRSlGgVTegDaBZHQKFNoDK5kLB1fZQoaAZoCWgPQwgk7UYf831yQJSGlFKUaBVNPwFoFkdAoU4hhpg1FnV9lChoBmgJaA9DCFTiOsZV8HBAlIaUUpRoFU1bAWgWR0ChTkiudPLxdX2UKGgGaAloD0MI8rbSa7PDcECUhpRSlGgVTS0BaBZHQKFO4YrrgO11fZQoaAZoCWgPQwjg1t081ZBvQJSGlFKUaBVNMAFoFkdAoU++mgrYoXV9lChoBmgJaA9DCJQyqaENH29AlIaUUpRoFU1DAWgWR0ChT+hsqJ/HdX2UKGgGaAloD0MIe7/RjtuBcUCUhpRSlGgVTTsBaBZHQKFQYx8D0UZ1fZQoaAZoCWgPQwjf/fFeNVJwQJSGlFKUaBVNOAFoFkdAoVDMzCUHIXV9lChoBmgJaA9DCHoZxXJLK3BAlIaUUpRoFU0wAWgWR0ChUM0puuRtdWUu"
74
+ },
75
+ "ep_success_buffer": {
76
+ ":type:": "<class 'collections.deque'>",
77
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
78
+ },
79
+ "_n_updates": 1000,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.95,
83
+ "ent_coef": 0.0,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 128,
87
+ "n_epochs": 8,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null
95
+ }
first_attempt/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5e30c264f710620a160dacdb581c1185df82aaf20d1104f1c2b4d5090db036cf
3
+ size 87929
first_attempt/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d2976c295a3b56d8b3b5a45e3a4b42a911e724eb6e02e5db86a99f1275cf2657
3
+ size 43393
first_attempt/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
first_attempt/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.27 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.16
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.0+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.21.6
7
+ - Gym: 0.21.0
replay.mp4 ADDED
Binary file (232 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 258.09538477767353, "std_reward": 20.439014139403398, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-12T22:52:56.381267"}