Upload PPO LunarLander-v2 trained agent
Browse files- .gitattributes +1 -0
- README.md +28 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +94 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +7 -0
- replay.mp4 +3 -0
- results.json +1 -0
.gitattributes
CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: 248.62 +/- 19.92
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: LunarLander-v2
|
20 |
+
type: LunarLander-v2
|
21 |
+
---
|
22 |
+
|
23 |
+
# **PPO** Agent playing **LunarLander-v2**
|
24 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
25 |
+
|
26 |
+
## Usage (with Stable-baselines3)
|
27 |
+
TODO: Add your code
|
28 |
+
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f45c39d53b0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f45c39d5440>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f45c39d54d0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f45c39d5560>", "_build": "<function ActorCriticPolicy._build at 0x7f45c39d55f0>", "forward": "<function ActorCriticPolicy.forward at 0x7f45c39d5680>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f45c39d5710>", "_predict": "<function ActorCriticPolicy._predict at 0x7f45c39d57a0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f45c39d5830>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f45c39d58c0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f45c39d5950>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f45c3a26570>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVLwsAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwSX19yYW5kb21zdGF0ZV9jdG9ylJOUjAdNVDE5OTM3lIWUUpR9lCiMDWJpdF9nZW5lcmF0b3KUaBOMBXN0YXRllH2UKIwDa2V5lIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolsAJAAAAAAAAAAAAgLHl95oCoth07bSt1abXhXAdH/0L9nGLOXcP7rkfTTY5z6LFPf7y0P6VaLQnbPvQ4vgD65idGDG1XjgFp/84aC3J9i5ENI3uzhecGHdzVKke++lFJOqegNez3QPo1tXtIfZpFIrrpJxdZTRGKv6VDoFhqN3zKwkOMVLddJT6sUEZoakc1ls7zdkess+BT+WtvYKDFEmqQ/i+4k08Vyd0LCSAo9Lm6uq0UTq8zSCM0m9aC6YFEKG8mMIfQYpfHTLoZ7VRn4bw31iitSKFrMbQqae9m2s1FGwykBn4je1qMfNuyr7MoJbD7VdyykUE/cuIKMleVQrb14boaSo1Zljws1p4F87/K5/4fMR/H9SbIIIRlEfeaw401yP0oqh/cbI+attcdqiHdO9yP4jIOqSDyOOoAnnOEmU4NSDMrzLpwTkFC1vYsLipJjhIyzgHnT0akj1hrWm1/SLEpayzhYhsZBUwioUeQ01kuD5s5kp/n31E/tVWJxAZmiqMHWVj1fPG1RAJ66HKlrPRnoW1XHEpPVkDQPfTSwq4x+S5bvF5nS/IKPe7ZxPwjrgGD/p1PcXA7i+a/Qsr5yVQSqEK9t3tXaxoWNsH8+d1GRcy8mPrbfqEuJGfXr1zjnMTBS2glakQcRxbf4tp+ySL2IUDHKzQeoTlIL3k+1I+QkAbwBseBeO/Jowjq7GUkGQKBi8GIhmyiqObsPLnUSIpAGCpf3scDTFLKFsMXl485WrjZpLTZYdHKS+r+BSO2ZEfDijO9EHic1hSFiYXVeE2DW6joN1phraKHbP29dbc2DkYV3vnlbj45OI/D7vd3cH99xq73pZYl4BCC33uSKCItFSmDreYn/tCZ5M5V2sqWHnsDJyAAAoU87HW70tFeYdkMFwCBvbQe+0CGDee771CJBNWeVjWqG2XoKhAswGe/4Aboze3KouZfoqBey9/+jHJm14Mx9HAU6kWgAqvzsv+3jLZIVCylLAnUAndmCeMGQTyi2Df+0kAjOr33Dfm8FNqH/mcauMZiQ60UmC+WFkhAuSnyjJmTdVDcY/fobcGTeUO6QMMC2RnmxEIWQasKlvDlInGM7pBZdARtXjkMmKC4PfemjhYMXUv7MuTJEKvSvsTeA3H540PI1WGWJnYpJzTf3w25S+V09g2gu7BFSKVUncwyYdeVE2OX9cDcz5cHP5hbIx5yxtQVCBOKNUstlGDupA97wU8Mmb/ciNGVoWPvognX1DozBJqFmNagjA8CH0Fl1d8Dm0A8AEM4kt+WO4XAlif0MA6mPNGT3hfdOO9wd8poVnNyoAk4NhUHZl4qoff5KtOZm3+Zh9lHA/LqCd21p1yNqZDaXGuTyOuxpQa4Pw0+O0Mzp6HumVJTZYORqPbORdH3gQDYn1/jAYiUnQnbC8TTQvBBOcjHa9ax3Hqhseyc0OzoI8/PVb7tiKOdO0Cji2PSNHIsIqkjFleIUAGNzHqyLZjTDMYSdvTKpyc3AEC3h0yh9NLUSUh85mk2efaLa8xCBoZy5HkJKC2ZjgC3QGDaCdtPJQsbpNJvgShvNLBMaNxU9kaHbDi2Qa+A3WNhxZVw43I/9Ro0ZUdT0fctazZgNKJbHQpBliiGBf5HT0C7TReaRPYnZQkFgQU29K69ciunYp2xhMyoTE0TQmxFdyGGGNqT2b5RaTmc/bCtPwUir6mjCXlj3Y3PXurhub+ec7KMzQtM1Oe1CocwGLAGGQvQTmnn+3mLHXbuly+T4ugOWwfRBw3eN0Fa85fp4H74MorpcT6rmZAHueTtSrfftquLhItevejdifHfLd+EAhZxUQAkg+RETDeDDBUjjDIKdztEkNvgfvyE4IQz9xX2//nmiHHImKG5QzTfkle+zv+iC084NLsup4wLfbSTtBh8odB6Vhs4k2LU/e6/skKSm5RSCuhA69VAke5sajSQSu9UX+62SmDJLuNGwBdL89fsKi+rLVdWRubRtpHV11Ch8n0J9/vFzfz+i1MAC73sPJ2Gu4qIud8SQqE1LWM0gW+rbOzvXakszeJ9IVUny3rcdVYSkJawuBq2lt3uSvkt8YbaE4L8W8yPdPCkDpqEGIpIynrr2wQJCR7IlN8K/eSjrftyF5IK0ZwVS+IvKyTZKdaCaA50AcpNGTSkFH6DRKrljQ+dF2H7PkDkfDCE7t1K1cNjfiR7+1vukaNDglH69ggFWcmWij98dHFtOUm8ovHq+lgJMoYVEx+Of3PJC4Wb97nMOH/3N8/b9qHpuHPvFO/Ccfz/jdiGfChkCk6vifsYttbgSeFY0A7Ct+7c5LIgw09VXrh6IhOpQmfQJEyP4K4bRm9OJZzdxHb6kSVARgdLb0OohD112HUEdAKmiVQibvsHebsc66p65j3SfZgWvoGXM5VbGx5NT5x1OQaclm3dy+wjVwLPqodWIaTF7Cnlfit+2thVeGEYs9W88kH9/1xzCYvRQUANgHD2GkcFvP2c5zFds/663mCt0UmwNKW5TZpjJ9Wi8+oM0vT3kTDgYeTg1bqdMlbuFVYEd6X636yaTYzrjY2waKXxizPTgbYOGax/CDaIMj8Xi1dZmDVaiqPDUJ+JMSUa7wINIxwt7IVVc/50ufSFem5QXj94/AF6eVsp2wbriTxtMwRIfdKvbV+YDZkobyswBRKBY7DoyTAExgqUaALI5FIvgpcV2iCIyleMZjIuN8g4rR6f166jrBkMc/h75D9LSAKsaGniu/ORxWot68KB0sO3s7y3SOUZk+EVAcqLegNrtRoa30pyPXJsF9eGiRB2K73BU18SlZPPxNXIfKGPu/KFO3cjdQcgDy+q6pOgWqYXmimvcoUrxwiA7VVzOzQ2FWwMRWp/jCxAWsG2Y4XJubUCenwf0on38zywFC8eL8wyb7PQ3nT3ISxT/kzZkaeyR9trKRAtW0f/FA5LuJgYAxu/4VC5D3R04P+/K3ArOHvcxS30zPV7J2GMFj+FvH5FaOWiVFlXZ6FcLO2Xw+qfmJys4thPpeiLStxEvLFP6WUkpR5ZlNFihWNs4M8EYdfYsVepHj9SJmTePk4lddPRw6/SPg4ogxLMME9RRBStpGYAm97IgL0OqojTyDFLV9fMg3ohksW5z8WAb7+ENtvXh3z/ET+PWhWYiaNuBP0XqJpPzQH5/yrrSbU91lAjKTpZVq+8owkKTIW0BAHDCJU3Oklm43fieqJSlIe/K/1ITgC9mr6JJlSVp2ww0ah/bXWxS52XR+hf50yZecfbftuV9r+rUyDbSPtE2URkP146cBgubIcCbDJbs4Uc4fgR3m7lHFW7Tv+isxf/+6nYnpPpW4e5mBmKSK29qrYlGgJjAJ1NJSJiIeUUpQoSwNoDU5OTkr/////Sv////9LAHSUYk1wAoWUjAFDlHSUUpSMA3Bvc5RNcAJ1jAloYXNfZ2F1c3OUSwCMBWdhdXNzlEcAAAAAAAAAAHVidWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": "RandomState(MT19937)"}, "n_envs": 16, "num_timesteps": 507904, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": 42069, "action_noise": null, "start_time": 1651680774.3166642, "learning_rate": 0.001, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9QYk3S8an8hZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAMixmL6ViVY/YYukve8Bmb4h9zC+LOWAPQAAAAAAAAAAmv99PClobLoYRrg7xV+XNkBVBzoz/Y41AACAPwAAgD8zIWo9uNenu/OCbbyekkg8r0RePWYiKb0AAIA/AACAP6ZuMT5q3hk/I+pXvMPST77eGzE9RZjCvAAAAAAAAAAABpspvhzqc7yIU6W4ztF+t5x13z1CcQ04AACAPwAAgD+mOSq+MimiPqBUDz4/cFO+zPKrvVRBjD0AAAAAAAAAAJrJ3Dp7fou6zzKIuyYPm7WFWq66vO+bOgAAgD8AAIA/ZlLBOyk0Gbr6AJK8R8VzPGXtbDtjl1W9AACAPwAAgD+APfw9wtGAP5KlD7wRfse+COyUPQr/IL0AAAAAAAAAAGYMqrxcZ326Mi3zO9/Xa7PssAC7SqGJsgAAgD8AAIA/zVHCvOEog7rh7YW7K5JwNVtCUTv+K5w6AACAPwAAgD9N1wC+cSEHu++zGTxOpuk5FywxPDiUyboAAIA/AACAPxpHB71S8LO5/78KuZ+54rV3ByE6Q1MiOAAAgD8AAIA/Wibkvc46rT/5QZm+DDPxvvD0bb0j9aQ9AAAAAAAAAACzw3Y9PVpRucZrRjtJHWM2TDlmuyhna7oAAIA/AACAP5rH0jzDkV66Hg6SuTc/FDYi4M06IsalOAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVdhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMItOTxtHxpYkCUhpRSlIwBbJRN6AOMAXSUR0CJ/+D9wWFfdX2UKGgGaAloD0MIJPCHn//pZUCUhpRSlGgVTegDaBZHQIoA+b/ffoB1fZQoaAZoCWgPQwjv5xTk57ZiQJSGlFKUaBVN6ANoFkdAiiX/R3NcGHV9lChoBmgJaA9DCCE7b2OzIV5AlIaUUpRoFU3oA2gWR0CKMAqyWzF/dX2UKGgGaAloD0MIKm9HOC0HYECUhpRSlGgVTegDaBZHQIoyEO/cnE51fZQoaAZoCWgPQwiEDOTZ5eRiQJSGlFKUaBVN6ANoFkdAijQ1XFLnLnV9lChoBmgJaA9DCIvCLooe9mRAlIaUUpRoFU3oA2gWR0CKSBOnl4kedX2UKGgGaAloD0MIiCtn74wQSECUhpRSlGgVTRoBaBZHQIrQjTQVsUJ1fZQoaAZoCWgPQwh2NXnKaolgQJSGlFKUaBVN6ANoFkdAitZjm8ujAXV9lChoBmgJaA9DCHyBWaHI4GBAlIaUUpRoFU3oA2gWR0CK4a+TvAoHdX2UKGgGaAloD0MI7ded7jypZECUhpRSlGgVTegDaBZHQIrvQ9X9zfd1fZQoaAZoCWgPQwhnnfF9cbljQJSGlFKUaBVN6ANoFkdAivBzspoboHV9lChoBmgJaA9DCAWm07oN11RAlIaUUpRoFU3oA2gWR0CK9Q3w1BMSdX2UKGgGaAloD0MIvY+jObJUZ0CUhpRSlGgVTegDaBZHQIr1ua4MF2V1fZQoaAZoCWgPQwjOT3Ec+PtiQJSGlFKUaBVN6ANoFkdAivs1uJk5InV9lChoBmgJaA9DCNZW7C+78VpAlIaUUpRoFU3oA2gWR0CK+/mig00ndX2UKGgGaAloD0MIyenr+ZoNKECUhpRSlGgVS/9oFkdAiwUERJ2+wnV9lChoBmgJaA9DCC6qRUQxol1AlIaUUpRoFU3oA2gWR0CLFIMNMGordX2UKGgGaAloD0MIN/xuuuX5YkCUhpRSlGgVTegDaBZHQIsVa5CngpB1fZQoaAZoCWgPQwi77q1ITD9kQJSGlFKUaBVN6ANoFkdAixZlruYx+XV9lChoBmgJaA9DCAqjWdk+FBZAlIaUUpRoFUv3aBZHQIscrhvR7Z51fZQoaAZoCWgPQwgjLgCN0glEQJSGlFKUaBVL5GgWR0CLOODM/yG0dX2UKGgGaAloD0MI02hyMQbiY0CUhpRSlGgVTegDaBZHQItEA+pwS8J1fZQoaAZoCWgPQwgxQQ3fwolfQJSGlFKUaBVN6ANoFkdAi0YEka/ATXV9lChoBmgJaA9DCMlxp3SwHmVAlIaUUpRoFU3oA2gWR0CLR/DWsijddX2UKGgGaAloD0MIiPVGrTBoZkCUhpRSlGgVTegDaBZHQItaCcVgx8F1fZQoaAZoCWgPQwjf3F897gFlQJSGlFKUaBVN6ANoFkdAi+Qy+6Ae73V9lChoBmgJaA9DCHaLwFjf2GRAlIaUUpRoFU3oA2gWR0CL6d63RXwLdX2UKGgGaAloD0MIRdjw9EoxYkCUhpRSlGgVTegDaBZHQIwDRGYrrgR1fZQoaAZoCWgPQwi2TIbj+bBdQJSGlFKUaBVN6ANoFkdAjASIaDPGAHV9lChoBmgJaA9DCNwRTgteHV9AlIaUUpRoFU3oA2gWR0CMCbmRNh3JdX2UKGgGaAloD0MI7X+AteqhYUCUhpRSlGgVTegDaBZHQIwKecx0uDl1fZQoaAZoCWgPQwgHflTDflFiQJSGlFKUaBVN6ANoFkdAjBFfzjFQ23V9lChoBmgJaA9DCOBnXDgQLWRAlIaUUpRoFU3oA2gWR0CMHBQQcxTLdX2UKGgGaAloD0MIqI3qdCDLEMCUhpRSlGgVS/toFkdAjCi4G2TgVHV9lChoBmgJaA9DCJdUbTfBjWVAlIaUUpRoFU3oA2gWR0CMLG11nuiOdX2UKGgGaAloD0MIyol2FdLiZ0CUhpRSlGgVTegDaBZHQIwuTn/1g6V1fZQoaAZoCWgPQwhybhPulSVFQJSGlFKUaBVNIAFoFkdAjDPv/7zkIXV9lChoBmgJaA9DCIs4nWSr8WRAlIaUUpRoFU3oA2gWR0CMNKnWrfcfdX2UKGgGaAloD0MIGVWGcbdmYECUhpRSlGgVTegDaBZHQIxOiPXCj1x1fZQoaAZoCWgPQwh2wktw6v80QJSGlFKUaBVL/GgWR0CMUU2uxKQJdX2UKGgGaAloD0MIE0ceiKwUYECUhpRSlGgVTegDaBZHQIxYpMFlkH51fZQoaAZoCWgPQwhYdOs1PW5JQJSGlFKUaBVN6ANoFkdAjFpwiqyWzHV9lChoBmgJaA9DCI4CRMGMu2NAlIaUUpRoFU3oA2gWR0CMXEKUmlZYdX2UKGgGaAloD0MIvi7Df7ppXECUhpRSlGgVTegDaBZHQIxuJ9mYjSp1fZQoaAZoCWgPQwhRTUnW4fQ8QJSGlFKUaBVLxWgWR0CMbifQrtmddX2UKGgGaAloD0MIyatzDMjGYECUhpRSlGgVTegDaBZHQIx5PVNHpbF1fZQoaAZoCWgPQwgzGCMSBVpjQJSGlFKUaBVN6ANoFkdAjP3KFqSHM3V9lChoBmgJaA9DCK5/12fOXkJAlIaUUpRoFUvoaBZHQI0RAtL+PzZ1fZQoaAZoCWgPQwicbW5MT7JiQJSGlFKUaBVN6ANoFkdAjRl4mCyyEHV9lChoBmgJaA9DCKvMlNZfNmBAlIaUUpRoFU3oA2gWR0CNH6MmWt2cdX2UKGgGaAloD0MIPpKSHgbjYkCUhpRSlGgVTegDaBZHQI0nBujynUF1fZQoaAZoCWgPQwhyTuyhfUZgQJSGlFKUaBVN6ANoFkdAjTIzmwJPZnV9lChoBmgJaA9DCK6cvTNa42VAlIaUUpRoFU3oA2gWR0CNP8BYmsvJdX2UKGgGaAloD0MIvmw7bQ1hYkCUhpRSlGgVTegDaBZHQI1F6c5Ke051fZQoaAZoCWgPQwizYOKPoh5hQJSGlFKUaBVN6ANoFkdAjUwC+cpb2XV9lChoBmgJaA9DCEUTKGIRY11AlIaUUpRoFU3oA2gWR0CNTMSXdCVsdX2UKGgGaAloD0MILJyk+eNWYkCUhpRSlGgVTegDaBZHQI1mozHjp9t1fZQoaAZoCWgPQwiU3je+9updQJSGlFKUaBVN6ANoFkdAjXEE/bCaZ3V9lChoBmgJaA9DCNkh/mHLGWFAlIaUUpRoFU3oA2gWR0CNcujQiRnwdX2UKGgGaAloD0MI6Xx4liD8ZkCUhpRSlGgVTegDaBZHQI102Hvc8DB1fZQoaAZoCWgPQwhDG4ANiA5iQJSGlFKUaBVN6ANoFkdAjYeG21D0DnV9lChoBmgJaA9DCCbg10iScWNAlIaUUpRoFU3oA2gWR0CNkwMZP2wndX2UKGgGaAloD0MIbF1qhH61YECUhpRSlGgVTegDaBZHQI4XqA6Mir11fZQoaAZoCWgPQwgvv9Nkxn1iQJSGlFKUaBVN6ANoFkdAjiwiTUy57XV9lChoBmgJaA9DCH13K0t0YFdAlIaUUpRoFU3oA2gWR0CONKHX2/SIdX2UKGgGaAloD0MIQlvOpbgLZkCUhpRSlGgVTegDaBZHQI4625nUUfx1fZQoaAZoCWgPQwgg8SvWcKBnQJSGlFKUaBVN6ANoFkdAjkI0LUkOZ3V9lChoBmgJaA9DCMql8QsvUmFAlIaUUpRoFU3oA2gWR0COTYKcd5prdX2UKGgGaAloD0MISWQfZFmsSkCUhpRSlGgVS79oFkdAjlg4gaFVUHV9lChoBmgJaA9DCB+hZkiVvmBAlIaUUpRoFU3oA2gWR0COWmvBacI7dX2UKGgGaAloD0MIMqoM4+6HYUCUhpRSlGgVTegDaBZHQI5gO5lOGj91fZQoaAZoCWgPQwggKLfte+5jQJSGlFKUaBVN6ANoFkdAjmYlByCFsnV9lChoBmgJaA9DCIS3ByEgYWdAlIaUUpRoFU3oA2gWR0COZuVyFPBSdX2UKGgGaAloD0MIQRAgQ8fXZkCUhpRSlGgVTegDaBZHQI6AcB+4LCx1fZQoaAZoCWgPQwguy9dl+ApRQJSGlFKUaBVL12gWR0COhYG9HtngdX2UKGgGaAloD0MIDmsqi8LIX0CUhpRSlGgVTegDaBZHQI6KchaC+UR1fZQoaAZoCWgPQwiSXtTuV79kQJSGlFKUaBVN6ANoFkdAjow8brC3w3V9lChoBmgJaA9DCL8MxohE52BAlIaUUpRoFU3oA2gWR0COjh7b+Lm7dX2UKGgGaAloD0MIWaX0TC9rZkCUhpRSlGgVTegDaBZHQI6fDK9wm3R1fZQoaAZoCWgPQwjRlQhU/yRDQJSGlFKUaBVL9WgWR0COoy4lQdjodX2UKGgGaAloD0MIKcx7nGmvYECUhpRSlGgVTegDaBZHQI6pUQNCqp91fZQoaAZoCWgPQwhQ/1nzY9VkQJSGlFKUaBVN6ANoFkdAjq6ZZ8rqdHV9lChoBmgJaA9DCMe8jjhk/WFAlIaUUpRoFU3oA2gWR0CPPRr2QGOddX2UKGgGaAloD0MIDhE3p5JZYECUhpRSlGgVTegDaBZHQI9E3Him2st1fZQoaAZoCWgPQwhQGmoUkglfQJSGlFKUaBVN6ANoFkdAj1Hsi8nNPnV9lChoBmgJaA9DCLTk8bT83GVAlIaUUpRoFU3oA2gWR0CPXVvLowEhdX2UKGgGaAloD0MIbTZWYh7qZECUhpRSlGgVTegDaBZHQI9oayB06o51fZQoaAZoCWgPQwi/YDds2wVkQJSGlFKUaBVN6ANoFkdAj2p+nQ6ZIHV9lChoBmgJaA9DCA4SonxB22NAlIaUUpRoFU3oA2gWR0CPb/ZEDyOJdX2UKGgGaAloD0MIg8MLItKkY0CUhpRSlGgVTegDaBZHQI92cC1Z1V51fZQoaAZoCWgPQwgapOApZIBkQJSGlFKUaBVN6ANoFkdAj5YhlDneSHV9lChoBmgJaA9DCKUSntBrnGNAlIaUUpRoFU3oA2gWR0CPmwAp8WsSdX2UKGgGaAloD0MIVRfwMkM+YECUhpRSlGgVTegDaBZHQI+c6b+cYqJ1fZQoaAZoCWgPQwgw2XiwxQZfQJSGlFKUaBVN6ANoFkdAj568ZDRc/3V9lChoBmgJaA9DCC7kEdzIHmdAlIaUUpRoFU3oA2gWR0CPsADoyKvWdX2UKGgGaAloD0MIVB9I3jnnXECUhpRSlGgVTegDaBZHQI+0QHzH0bt1fZQoaAZoCWgPQwjuk6MAUUAlwJSGlFKUaBVL0mgWR0CPui4LkS26dX2UKGgGaAloD0MIJ71vfO0eXECUhpRSlGgVTegDaBZHQI+6UlRgqmV1fZQoaAZoCWgPQwgUlnhA2ZpjQJSGlFKUaBVN6ANoFkdAj79V4oqkM3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 8, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b99d8d25e8d8355f5346e12849f2f5f09d8dee20d54b74da32bab30102c27a40
|
3 |
+
size 147698
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.5.0
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f45c39d53b0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f45c39d5440>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f45c39d54d0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f45c39d5560>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f45c39d55f0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f45c39d5680>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f45c39d5710>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f45c39d57a0>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f45c39d5830>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f45c39d58c0>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f45c39d5950>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7f45c3a26570>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVLwsAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwSX19yYW5kb21zdGF0ZV9jdG9ylJOUjAdNVDE5OTM3lIWUUpR9lCiMDWJpdF9nZW5lcmF0b3KUaBOMBXN0YXRllH2UKIwDa2V5lIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolsAJAAAAAAAAAAAAgLHl95oCoth07bSt1abXhXAdH/0L9nGLOXcP7rkfTTY5z6LFPf7y0P6VaLQnbPvQ4vgD65idGDG1XjgFp/84aC3J9i5ENI3uzhecGHdzVKke++lFJOqegNez3QPo1tXtIfZpFIrrpJxdZTRGKv6VDoFhqN3zKwkOMVLddJT6sUEZoakc1ls7zdkess+BT+WtvYKDFEmqQ/i+4k08Vyd0LCSAo9Lm6uq0UTq8zSCM0m9aC6YFEKG8mMIfQYpfHTLoZ7VRn4bw31iitSKFrMbQqae9m2s1FGwykBn4je1qMfNuyr7MoJbD7VdyykUE/cuIKMleVQrb14boaSo1Zljws1p4F87/K5/4fMR/H9SbIIIRlEfeaw401yP0oqh/cbI+attcdqiHdO9yP4jIOqSDyOOoAnnOEmU4NSDMrzLpwTkFC1vYsLipJjhIyzgHnT0akj1hrWm1/SLEpayzhYhsZBUwioUeQ01kuD5s5kp/n31E/tVWJxAZmiqMHWVj1fPG1RAJ66HKlrPRnoW1XHEpPVkDQPfTSwq4x+S5bvF5nS/IKPe7ZxPwjrgGD/p1PcXA7i+a/Qsr5yVQSqEK9t3tXaxoWNsH8+d1GRcy8mPrbfqEuJGfXr1zjnMTBS2glakQcRxbf4tp+ySL2IUDHKzQeoTlIL3k+1I+QkAbwBseBeO/Jowjq7GUkGQKBi8GIhmyiqObsPLnUSIpAGCpf3scDTFLKFsMXl485WrjZpLTZYdHKS+r+BSO2ZEfDijO9EHic1hSFiYXVeE2DW6joN1phraKHbP29dbc2DkYV3vnlbj45OI/D7vd3cH99xq73pZYl4BCC33uSKCItFSmDreYn/tCZ5M5V2sqWHnsDJyAAAoU87HW70tFeYdkMFwCBvbQe+0CGDee771CJBNWeVjWqG2XoKhAswGe/4Aboze3KouZfoqBey9/+jHJm14Mx9HAU6kWgAqvzsv+3jLZIVCylLAnUAndmCeMGQTyi2Df+0kAjOr33Dfm8FNqH/mcauMZiQ60UmC+WFkhAuSnyjJmTdVDcY/fobcGTeUO6QMMC2RnmxEIWQasKlvDlInGM7pBZdARtXjkMmKC4PfemjhYMXUv7MuTJEKvSvsTeA3H540PI1WGWJnYpJzTf3w25S+V09g2gu7BFSKVUncwyYdeVE2OX9cDcz5cHP5hbIx5yxtQVCBOKNUstlGDupA97wU8Mmb/ciNGVoWPvognX1DozBJqFmNagjA8CH0Fl1d8Dm0A8AEM4kt+WO4XAlif0MA6mPNGT3hfdOO9wd8poVnNyoAk4NhUHZl4qoff5KtOZm3+Zh9lHA/LqCd21p1yNqZDaXGuTyOuxpQa4Pw0+O0Mzp6HumVJTZYORqPbORdH3gQDYn1/jAYiUnQnbC8TTQvBBOcjHa9ax3Hqhseyc0OzoI8/PVb7tiKOdO0Cji2PSNHIsIqkjFleIUAGNzHqyLZjTDMYSdvTKpyc3AEC3h0yh9NLUSUh85mk2efaLa8xCBoZy5HkJKC2ZjgC3QGDaCdtPJQsbpNJvgShvNLBMaNxU9kaHbDi2Qa+A3WNhxZVw43I/9Ro0ZUdT0fctazZgNKJbHQpBliiGBf5HT0C7TReaRPYnZQkFgQU29K69ciunYp2xhMyoTE0TQmxFdyGGGNqT2b5RaTmc/bCtPwUir6mjCXlj3Y3PXurhub+ec7KMzQtM1Oe1CocwGLAGGQvQTmnn+3mLHXbuly+T4ugOWwfRBw3eN0Fa85fp4H74MorpcT6rmZAHueTtSrfftquLhItevejdifHfLd+EAhZxUQAkg+RETDeDDBUjjDIKdztEkNvgfvyE4IQz9xX2//nmiHHImKG5QzTfkle+zv+iC084NLsup4wLfbSTtBh8odB6Vhs4k2LU/e6/skKSm5RSCuhA69VAke5sajSQSu9UX+62SmDJLuNGwBdL89fsKi+rLVdWRubRtpHV11Ch8n0J9/vFzfz+i1MAC73sPJ2Gu4qIud8SQqE1LWM0gW+rbOzvXakszeJ9IVUny3rcdVYSkJawuBq2lt3uSvkt8YbaE4L8W8yPdPCkDpqEGIpIynrr2wQJCR7IlN8K/eSjrftyF5IK0ZwVS+IvKyTZKdaCaA50AcpNGTSkFH6DRKrljQ+dF2H7PkDkfDCE7t1K1cNjfiR7+1vukaNDglH69ggFWcmWij98dHFtOUm8ovHq+lgJMoYVEx+Of3PJC4Wb97nMOH/3N8/b9qHpuHPvFO/Ccfz/jdiGfChkCk6vifsYttbgSeFY0A7Ct+7c5LIgw09VXrh6IhOpQmfQJEyP4K4bRm9OJZzdxHb6kSVARgdLb0OohD112HUEdAKmiVQibvsHebsc66p65j3SfZgWvoGXM5VbGx5NT5x1OQaclm3dy+wjVwLPqodWIaTF7Cnlfit+2thVeGEYs9W88kH9/1xzCYvRQUANgHD2GkcFvP2c5zFds/663mCt0UmwNKW5TZpjJ9Wi8+oM0vT3kTDgYeTg1bqdMlbuFVYEd6X636yaTYzrjY2waKXxizPTgbYOGax/CDaIMj8Xi1dZmDVaiqPDUJ+JMSUa7wINIxwt7IVVc/50ufSFem5QXj94/AF6eVsp2wbriTxtMwRIfdKvbV+YDZkobyswBRKBY7DoyTAExgqUaALI5FIvgpcV2iCIyleMZjIuN8g4rR6f166jrBkMc/h75D9LSAKsaGniu/ORxWot68KB0sO3s7y3SOUZk+EVAcqLegNrtRoa30pyPXJsF9eGiRB2K73BU18SlZPPxNXIfKGPu/KFO3cjdQcgDy+q6pOgWqYXmimvcoUrxwiA7VVzOzQ2FWwMRWp/jCxAWsG2Y4XJubUCenwf0on38zywFC8eL8wyb7PQ3nT3ISxT/kzZkaeyR9trKRAtW0f/FA5LuJgYAxu/4VC5D3R04P+/K3ArOHvcxS30zPV7J2GMFj+FvH5FaOWiVFlXZ6FcLO2Xw+qfmJys4thPpeiLStxEvLFP6WUkpR5ZlNFihWNs4M8EYdfYsVepHj9SJmTePk4lddPRw6/SPg4ogxLMME9RRBStpGYAm97IgL0OqojTyDFLV9fMg3ohksW5z8WAb7+ENtvXh3z/ET+PWhWYiaNuBP0XqJpPzQH5/yrrSbU91lAjKTpZVq+8owkKTIW0BAHDCJU3Oklm43fieqJSlIe/K/1ITgC9mr6JJlSVp2ww0ah/bXWxS52XR+hf50yZecfbftuV9r+rUyDbSPtE2URkP146cBgubIcCbDJbs4Uc4fgR3m7lHFW7Tv+isxf/+6nYnpPpW4e5mBmKSK29qrYlGgJjAJ1NJSJiIeUUpQoSwNoDU5OTkr/////Sv////9LAHSUYk1wAoWUjAFDlHSUUpSMA3Bvc5RNcAJ1jAloYXNfZ2F1c3OUSwCMBWdhdXNzlEcAAAAAAAAAAHVidWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": "RandomState(MT19937)"
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 507904,
|
46 |
+
"_total_timesteps": 500000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": 42069,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1651680774.3166642,
|
51 |
+
"learning_rate": 0.001,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9QYk3S8an8hZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAMixmL6ViVY/YYukve8Bmb4h9zC+LOWAPQAAAAAAAAAAmv99PClobLoYRrg7xV+XNkBVBzoz/Y41AACAPwAAgD8zIWo9uNenu/OCbbyekkg8r0RePWYiKb0AAIA/AACAP6ZuMT5q3hk/I+pXvMPST77eGzE9RZjCvAAAAAAAAAAABpspvhzqc7yIU6W4ztF+t5x13z1CcQ04AACAPwAAgD+mOSq+MimiPqBUDz4/cFO+zPKrvVRBjD0AAAAAAAAAAJrJ3Dp7fou6zzKIuyYPm7WFWq66vO+bOgAAgD8AAIA/ZlLBOyk0Gbr6AJK8R8VzPGXtbDtjl1W9AACAPwAAgD+APfw9wtGAP5KlD7wRfse+COyUPQr/IL0AAAAAAAAAAGYMqrxcZ326Mi3zO9/Xa7PssAC7SqGJsgAAgD8AAIA/zVHCvOEog7rh7YW7K5JwNVtCUTv+K5w6AACAPwAAgD9N1wC+cSEHu++zGTxOpuk5FywxPDiUyboAAIA/AACAPxpHB71S8LO5/78KuZ+54rV3ByE6Q1MiOAAAgD8AAIA/Wibkvc46rT/5QZm+DDPxvvD0bb0j9aQ9AAAAAAAAAACzw3Y9PVpRucZrRjtJHWM2TDlmuyhna7oAAIA/AACAP5rH0jzDkV66Hg6SuTc/FDYi4M06IsalOAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.015808000000000044,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVdhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMItOTxtHxpYkCUhpRSlIwBbJRN6AOMAXSUR0CJ/+D9wWFfdX2UKGgGaAloD0MIJPCHn//pZUCUhpRSlGgVTegDaBZHQIoA+b/ffoB1fZQoaAZoCWgPQwjv5xTk57ZiQJSGlFKUaBVN6ANoFkdAiiX/R3NcGHV9lChoBmgJaA9DCCE7b2OzIV5AlIaUUpRoFU3oA2gWR0CKMAqyWzF/dX2UKGgGaAloD0MIKm9HOC0HYECUhpRSlGgVTegDaBZHQIoyEO/cnE51fZQoaAZoCWgPQwiEDOTZ5eRiQJSGlFKUaBVN6ANoFkdAijQ1XFLnLnV9lChoBmgJaA9DCIvCLooe9mRAlIaUUpRoFU3oA2gWR0CKSBOnl4kedX2UKGgGaAloD0MIiCtn74wQSECUhpRSlGgVTRoBaBZHQIrQjTQVsUJ1fZQoaAZoCWgPQwh2NXnKaolgQJSGlFKUaBVN6ANoFkdAitZjm8ujAXV9lChoBmgJaA9DCHyBWaHI4GBAlIaUUpRoFU3oA2gWR0CK4a+TvAoHdX2UKGgGaAloD0MI7ded7jypZECUhpRSlGgVTegDaBZHQIrvQ9X9zfd1fZQoaAZoCWgPQwhnnfF9cbljQJSGlFKUaBVN6ANoFkdAivBzspoboHV9lChoBmgJaA9DCAWm07oN11RAlIaUUpRoFU3oA2gWR0CK9Q3w1BMSdX2UKGgGaAloD0MIvY+jObJUZ0CUhpRSlGgVTegDaBZHQIr1ua4MF2V1fZQoaAZoCWgPQwjOT3Ec+PtiQJSGlFKUaBVN6ANoFkdAivs1uJk5InV9lChoBmgJaA9DCNZW7C+78VpAlIaUUpRoFU3oA2gWR0CK+/mig00ndX2UKGgGaAloD0MIyenr+ZoNKECUhpRSlGgVS/9oFkdAiwUERJ2+wnV9lChoBmgJaA9DCC6qRUQxol1AlIaUUpRoFU3oA2gWR0CLFIMNMGordX2UKGgGaAloD0MIN/xuuuX5YkCUhpRSlGgVTegDaBZHQIsVa5CngpB1fZQoaAZoCWgPQwi77q1ITD9kQJSGlFKUaBVN6ANoFkdAixZlruYx+XV9lChoBmgJaA9DCAqjWdk+FBZAlIaUUpRoFUv3aBZHQIscrhvR7Z51fZQoaAZoCWgPQwgjLgCN0glEQJSGlFKUaBVL5GgWR0CLOODM/yG0dX2UKGgGaAloD0MI02hyMQbiY0CUhpRSlGgVTegDaBZHQItEA+pwS8J1fZQoaAZoCWgPQwgxQQ3fwolfQJSGlFKUaBVN6ANoFkdAi0YEka/ATXV9lChoBmgJaA9DCMlxp3SwHmVAlIaUUpRoFU3oA2gWR0CLR/DWsijddX2UKGgGaAloD0MIiPVGrTBoZkCUhpRSlGgVTegDaBZHQItaCcVgx8F1fZQoaAZoCWgPQwjf3F897gFlQJSGlFKUaBVN6ANoFkdAi+Qy+6Ae73V9lChoBmgJaA9DCHaLwFjf2GRAlIaUUpRoFU3oA2gWR0CL6d63RXwLdX2UKGgGaAloD0MIRdjw9EoxYkCUhpRSlGgVTegDaBZHQIwDRGYrrgR1fZQoaAZoCWgPQwi2TIbj+bBdQJSGlFKUaBVN6ANoFkdAjASIaDPGAHV9lChoBmgJaA9DCNwRTgteHV9AlIaUUpRoFU3oA2gWR0CMCbmRNh3JdX2UKGgGaAloD0MI7X+AteqhYUCUhpRSlGgVTegDaBZHQIwKecx0uDl1fZQoaAZoCWgPQwgHflTDflFiQJSGlFKUaBVN6ANoFkdAjBFfzjFQ23V9lChoBmgJaA9DCOBnXDgQLWRAlIaUUpRoFU3oA2gWR0CMHBQQcxTLdX2UKGgGaAloD0MIqI3qdCDLEMCUhpRSlGgVS/toFkdAjCi4G2TgVHV9lChoBmgJaA9DCJdUbTfBjWVAlIaUUpRoFU3oA2gWR0CMLG11nuiOdX2UKGgGaAloD0MIyol2FdLiZ0CUhpRSlGgVTegDaBZHQIwuTn/1g6V1fZQoaAZoCWgPQwhybhPulSVFQJSGlFKUaBVNIAFoFkdAjDPv/7zkIXV9lChoBmgJaA9DCIs4nWSr8WRAlIaUUpRoFU3oA2gWR0CMNKnWrfcfdX2UKGgGaAloD0MIGVWGcbdmYECUhpRSlGgVTegDaBZHQIxOiPXCj1x1fZQoaAZoCWgPQwh2wktw6v80QJSGlFKUaBVL/GgWR0CMUU2uxKQJdX2UKGgGaAloD0MIE0ceiKwUYECUhpRSlGgVTegDaBZHQIxYpMFlkH51fZQoaAZoCWgPQwhYdOs1PW5JQJSGlFKUaBVN6ANoFkdAjFpwiqyWzHV9lChoBmgJaA9DCI4CRMGMu2NAlIaUUpRoFU3oA2gWR0CMXEKUmlZYdX2UKGgGaAloD0MIvi7Df7ppXECUhpRSlGgVTegDaBZHQIxuJ9mYjSp1fZQoaAZoCWgPQwhRTUnW4fQ8QJSGlFKUaBVLxWgWR0CMbifQrtmddX2UKGgGaAloD0MIyatzDMjGYECUhpRSlGgVTegDaBZHQIx5PVNHpbF1fZQoaAZoCWgPQwgzGCMSBVpjQJSGlFKUaBVN6ANoFkdAjP3KFqSHM3V9lChoBmgJaA9DCK5/12fOXkJAlIaUUpRoFUvoaBZHQI0RAtL+PzZ1fZQoaAZoCWgPQwicbW5MT7JiQJSGlFKUaBVN6ANoFkdAjRl4mCyyEHV9lChoBmgJaA9DCKvMlNZfNmBAlIaUUpRoFU3oA2gWR0CNH6MmWt2cdX2UKGgGaAloD0MIPpKSHgbjYkCUhpRSlGgVTegDaBZHQI0nBujynUF1fZQoaAZoCWgPQwhyTuyhfUZgQJSGlFKUaBVN6ANoFkdAjTIzmwJPZnV9lChoBmgJaA9DCK6cvTNa42VAlIaUUpRoFU3oA2gWR0CNP8BYmsvJdX2UKGgGaAloD0MIvmw7bQ1hYkCUhpRSlGgVTegDaBZHQI1F6c5Ke051fZQoaAZoCWgPQwizYOKPoh5hQJSGlFKUaBVN6ANoFkdAjUwC+cpb2XV9lChoBmgJaA9DCEUTKGIRY11AlIaUUpRoFU3oA2gWR0CNTMSXdCVsdX2UKGgGaAloD0MILJyk+eNWYkCUhpRSlGgVTegDaBZHQI1mozHjp9t1fZQoaAZoCWgPQwiU3je+9updQJSGlFKUaBVN6ANoFkdAjXEE/bCaZ3V9lChoBmgJaA9DCNkh/mHLGWFAlIaUUpRoFU3oA2gWR0CNcujQiRnwdX2UKGgGaAloD0MI6Xx4liD8ZkCUhpRSlGgVTegDaBZHQI102Hvc8DB1fZQoaAZoCWgPQwhDG4ANiA5iQJSGlFKUaBVN6ANoFkdAjYeG21D0DnV9lChoBmgJaA9DCCbg10iScWNAlIaUUpRoFU3oA2gWR0CNkwMZP2wndX2UKGgGaAloD0MIbF1qhH61YECUhpRSlGgVTegDaBZHQI4XqA6Mir11fZQoaAZoCWgPQwgvv9Nkxn1iQJSGlFKUaBVN6ANoFkdAjiwiTUy57XV9lChoBmgJaA9DCH13K0t0YFdAlIaUUpRoFU3oA2gWR0CONKHX2/SIdX2UKGgGaAloD0MIQlvOpbgLZkCUhpRSlGgVTegDaBZHQI4625nUUfx1fZQoaAZoCWgPQwgg8SvWcKBnQJSGlFKUaBVN6ANoFkdAjkI0LUkOZ3V9lChoBmgJaA9DCMql8QsvUmFAlIaUUpRoFU3oA2gWR0COTYKcd5prdX2UKGgGaAloD0MISWQfZFmsSkCUhpRSlGgVS79oFkdAjlg4gaFVUHV9lChoBmgJaA9DCB+hZkiVvmBAlIaUUpRoFU3oA2gWR0COWmvBacI7dX2UKGgGaAloD0MIMqoM4+6HYUCUhpRSlGgVTegDaBZHQI5gO5lOGj91fZQoaAZoCWgPQwggKLfte+5jQJSGlFKUaBVN6ANoFkdAjmYlByCFsnV9lChoBmgJaA9DCIS3ByEgYWdAlIaUUpRoFU3oA2gWR0COZuVyFPBSdX2UKGgGaAloD0MIQRAgQ8fXZkCUhpRSlGgVTegDaBZHQI6AcB+4LCx1fZQoaAZoCWgPQwguy9dl+ApRQJSGlFKUaBVL12gWR0COhYG9HtngdX2UKGgGaAloD0MIDmsqi8LIX0CUhpRSlGgVTegDaBZHQI6KchaC+UR1fZQoaAZoCWgPQwiSXtTuV79kQJSGlFKUaBVN6ANoFkdAjow8brC3w3V9lChoBmgJaA9DCL8MxohE52BAlIaUUpRoFU3oA2gWR0COjh7b+Lm7dX2UKGgGaAloD0MIWaX0TC9rZkCUhpRSlGgVTegDaBZHQI6fDK9wm3R1fZQoaAZoCWgPQwjRlQhU/yRDQJSGlFKUaBVL9WgWR0COoy4lQdjodX2UKGgGaAloD0MIKcx7nGmvYECUhpRSlGgVTegDaBZHQI6pUQNCqp91fZQoaAZoCWgPQwhQ/1nzY9VkQJSGlFKUaBVN6ANoFkdAjq6ZZ8rqdHV9lChoBmgJaA9DCMe8jjhk/WFAlIaUUpRoFU3oA2gWR0CPPRr2QGOddX2UKGgGaAloD0MIDhE3p5JZYECUhpRSlGgVTegDaBZHQI9E3Him2st1fZQoaAZoCWgPQwhQGmoUkglfQJSGlFKUaBVN6ANoFkdAj1Hsi8nNPnV9lChoBmgJaA9DCLTk8bT83GVAlIaUUpRoFU3oA2gWR0CPXVvLowEhdX2UKGgGaAloD0MIbTZWYh7qZECUhpRSlGgVTegDaBZHQI9oayB06o51fZQoaAZoCWgPQwi/YDds2wVkQJSGlFKUaBVN6ANoFkdAj2p+nQ6ZIHV9lChoBmgJaA9DCA4SonxB22NAlIaUUpRoFU3oA2gWR0CPb/ZEDyOJdX2UKGgGaAloD0MIg8MLItKkY0CUhpRSlGgVTegDaBZHQI92cC1Z1V51fZQoaAZoCWgPQwgapOApZIBkQJSGlFKUaBVN6ANoFkdAj5YhlDneSHV9lChoBmgJaA9DCKUSntBrnGNAlIaUUpRoFU3oA2gWR0CPmwAp8WsSdX2UKGgGaAloD0MIVRfwMkM+YECUhpRSlGgVTegDaBZHQI+c6b+cYqJ1fZQoaAZoCWgPQwgw2XiwxQZfQJSGlFKUaBVN6ANoFkdAj568ZDRc/3V9lChoBmgJaA9DCC7kEdzIHmdAlIaUUpRoFU3oA2gWR0CPsADoyKvWdX2UKGgGaAloD0MIVB9I3jnnXECUhpRSlGgVTegDaBZHQI+0QHzH0bt1fZQoaAZoCWgPQwjuk6MAUUAlwJSGlFKUaBVL0mgWR0CPui4LkS26dX2UKGgGaAloD0MIJ71vfO0eXECUhpRSlGgVTegDaBZHQI+6UlRgqmV1fZQoaAZoCWgPQwgUlnhA2ZpjQJSGlFKUaBVN6ANoFkdAj79V4oqkM3VlLg=="
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 248,
|
79 |
+
"n_steps": 1024,
|
80 |
+
"gamma": 0.999,
|
81 |
+
"gae_lambda": 0.98,
|
82 |
+
"ent_coef": 0.01,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 8,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4b3a66880855515188729a931fcef41a08056d61a9a2a11352e2e7f580e587a4
|
3 |
+
size 84829
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a4112d278562c6bc92d4abf5265e6d8c9169c6faec8c68299448ad9554c1863e
|
3 |
+
size 43201
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
|
2 |
+
Python: 3.7.13
|
3 |
+
Stable-Baselines3: 1.5.0
|
4 |
+
PyTorch: 1.11.0+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:afcde3bfbaf08385dc93b06ee68a5fa62bac60a4b5e9a4569f0482b39272bebb
|
3 |
+
size 217501
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 248.62157512094458, "std_reward": 19.91852897404011, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-04T16:34:58.598803"}
|