--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 base_model: distilbert-base-uncased model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: type: text-classification name: Text Classification dataset: name: emotion type: emotion args: default metrics: - type: accuracy value: 0.9275 name: Accuracy - type: f1 value: 0.9273822408882375 name: F1 - task: type: text-classification name: Text Classification dataset: name: emotion type: emotion config: default split: test metrics: - type: accuracy value: 0.919 name: Accuracy verified: true - type: precision value: 0.8882001804445858 name: Precision Macro verified: true - type: precision value: 0.919 name: Precision Micro verified: true - type: precision value: 0.9194695149914663 name: Precision Weighted verified: true - type: recall value: 0.857858142469294 name: Recall Macro verified: true - type: recall value: 0.919 name: Recall Micro verified: true - type: recall value: 0.919 name: Recall Weighted verified: true - type: f1 value: 0.8684381937860847 name: F1 Macro verified: true - type: f1 value: 0.919 name: F1 Micro verified: true - type: f1 value: 0.9182406234430719 name: F1 Weighted verified: true - type: loss value: 0.21632428467273712 name: loss verified: true --- # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2237 - Accuracy: 0.9275 - F1: 0.9274 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8643 | 1.0 | 250 | 0.3324 | 0.9065 | 0.9025 | | 0.2589 | 2.0 | 500 | 0.2237 | 0.9275 | 0.9274 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.11.0+cu113 - Datasets 1.16.1 - Tokenizers 0.10.3