armaniii commited on
Commit
ad2ba03
1 Parent(s): eefac40

Add new SentenceTransformer model.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,507 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: google-bert/bert-base-uncased
3
+ datasets:
4
+ - sentence-transformers/stsb
5
+ language:
6
+ - en
7
+ library_name: sentence-transformers
8
+ metrics:
9
+ - pearson_cosine
10
+ - spearman_cosine
11
+ - pearson_manhattan
12
+ - spearman_manhattan
13
+ - pearson_euclidean
14
+ - spearman_euclidean
15
+ - pearson_dot
16
+ - spearman_dot
17
+ - pearson_max
18
+ - spearman_max
19
+ pipeline_tag: sentence-similarity
20
+ tags:
21
+ - sentence-transformers
22
+ - sentence-similarity
23
+ - feature-extraction
24
+ - generated_from_trainer
25
+ - dataset_size:20127
26
+ - loss:CosineSimilarityLoss
27
+ widget:
28
+ - source_sentence: The man talked to a girl over the internet camera.
29
+ sentences:
30
+ - A group of elderly people pose around a dining table.
31
+ - A teenager talks to a girl over a webcam.
32
+ - There is no 'still' that is not relative to some other object.
33
+ - source_sentence: A woman is writing something.
34
+ sentences:
35
+ - Two eagles are perched on a branch.
36
+ - It refers to the maximum f-stop (which is defined as the ratio of focal length
37
+ to effective aperture diameter).
38
+ - A woman is chopping green onions.
39
+ - source_sentence: The player shoots the winning points.
40
+ sentences:
41
+ - Minimum wage laws hurt the least skilled, least productive the most.
42
+ - The basketball player is about to score points for his team.
43
+ - Sheep are grazing in the field in front of a line of trees.
44
+ - source_sentence: Stars form in star-formation regions, which itself develop from
45
+ molecular clouds.
46
+ sentences:
47
+ - Although I believe Searle is mistaken, I don't think you have found the problem.
48
+ - It may be possible for a solar system like ours to exist outside of a galaxy.
49
+ - A blond-haired child performing on the trumpet in front of a house while his younger
50
+ brother watches.
51
+ - source_sentence: While Queen may refer to both Queen regent (sovereign) or Queen
52
+ consort, the King has always been the sovereign.
53
+ sentences:
54
+ - At first, I thought this is a bit of a tricky question.
55
+ - A man sitting on the floor in a room is strumming a guitar.
56
+ - There is a very good reason not to refer to the Queen's spouse as "King" - because
57
+ they aren't the King.
58
+ model-index:
59
+ - name: SentenceTransformer based on google-bert/bert-base-uncased
60
+ results:
61
+ - task:
62
+ type: semantic-similarity
63
+ name: Semantic Similarity
64
+ dataset:
65
+ name: sts test
66
+ type: sts-test
67
+ metrics:
68
+ - type: pearson_cosine
69
+ value: 0.8704036241540303
70
+ name: Pearson Cosine
71
+ - type: spearman_cosine
72
+ value: 0.8723063947160014
73
+ name: Spearman Cosine
74
+ - type: pearson_manhattan
75
+ value: 0.8240304398880643
76
+ name: Pearson Manhattan
77
+ - type: spearman_manhattan
78
+ value: 0.8326280427400794
79
+ name: Spearman Manhattan
80
+ - type: pearson_euclidean
81
+ value: 0.824332157368767
82
+ name: Pearson Euclidean
83
+ - type: spearman_euclidean
84
+ value: 0.8327621115149644
85
+ name: Spearman Euclidean
86
+ - type: pearson_dot
87
+ value: 0.7561120117358238
88
+ name: Pearson Dot
89
+ - type: spearman_dot
90
+ value: 0.7732899193523305
91
+ name: Spearman Dot
92
+ - type: pearson_max
93
+ value: 0.8704036241540303
94
+ name: Pearson Max
95
+ - type: spearman_max
96
+ value: 0.8723063947160014
97
+ name: Spearman Max
98
+ - type: pearson_cosine
99
+ value: 0.8341388917194029
100
+ name: Pearson Cosine
101
+ - type: spearman_cosine
102
+ value: 0.8312253997736475
103
+ name: Spearman Cosine
104
+ - type: pearson_manhattan
105
+ value: 0.8121299512156789
106
+ name: Pearson Manhattan
107
+ - type: spearman_manhattan
108
+ value: 0.8102823785744042
109
+ name: Spearman Manhattan
110
+ - type: pearson_euclidean
111
+ value: 0.8124379587910084
112
+ name: Pearson Euclidean
113
+ - type: spearman_euclidean
114
+ value: 0.8106160221464417
115
+ name: Spearman Euclidean
116
+ - type: pearson_dot
117
+ value: 0.6947485972044003
118
+ name: Pearson Dot
119
+ - type: spearman_dot
120
+ value: 0.6858002756760537
121
+ name: Spearman Dot
122
+ - type: pearson_max
123
+ value: 0.8341388917194029
124
+ name: Pearson Max
125
+ - type: spearman_max
126
+ value: 0.8312253997736475
127
+ name: Spearman Max
128
+ ---
129
+
130
+ # SentenceTransformer based on google-bert/bert-base-uncased
131
+
132
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [google-bert/bert-base-uncased](https://huggingface.co/google-bert/bert-base-uncased) on the [sentence-transformers/stsb](https://huggingface.co/datasets/sentence-transformers/stsb) dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
133
+
134
+ ## Model Details
135
+
136
+ ### Model Description
137
+ - **Model Type:** Sentence Transformer
138
+ - **Base model:** [google-bert/bert-base-uncased](https://huggingface.co/google-bert/bert-base-uncased) <!-- at revision 86b5e0934494bd15c9632b12f734a8a67f723594 -->
139
+ - **Maximum Sequence Length:** 128 tokens
140
+ - **Output Dimensionality:** 768 tokens
141
+ - **Similarity Function:** Cosine Similarity
142
+ - **Training Dataset:**
143
+ - [sentence-transformers/stsb](https://huggingface.co/datasets/sentence-transformers/stsb)
144
+ - **Language:** en
145
+ <!-- - **License:** Unknown -->
146
+
147
+ ### Model Sources
148
+
149
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
150
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
151
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
152
+
153
+ ### Full Model Architecture
154
+
155
+ ```
156
+ SentenceTransformer(
157
+ (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
158
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
159
+ )
160
+ ```
161
+
162
+ ## Usage
163
+
164
+ ### Direct Usage (Sentence Transformers)
165
+
166
+ First install the Sentence Transformers library:
167
+
168
+ ```bash
169
+ pip install -U sentence-transformers
170
+ ```
171
+
172
+ Then you can load this model and run inference.
173
+ ```python
174
+ from sentence_transformers import SentenceTransformer
175
+
176
+ # Download from the 🤗 Hub
177
+ model = SentenceTransformer("armaniii/bert-base-uncased-augmentation-indomain-bm25-sts")
178
+ # Run inference
179
+ sentences = [
180
+ 'While Queen may refer to both Queen regent (sovereign) or Queen consort, the King has always been the sovereign.',
181
+ 'There is a very good reason not to refer to the Queen\'s spouse as "King" - because they aren\'t the King.',
182
+ 'A man sitting on the floor in a room is strumming a guitar.',
183
+ ]
184
+ embeddings = model.encode(sentences)
185
+ print(embeddings.shape)
186
+ # [3, 768]
187
+
188
+ # Get the similarity scores for the embeddings
189
+ similarities = model.similarity(embeddings, embeddings)
190
+ print(similarities.shape)
191
+ # [3, 3]
192
+ ```
193
+
194
+ <!--
195
+ ### Direct Usage (Transformers)
196
+
197
+ <details><summary>Click to see the direct usage in Transformers</summary>
198
+
199
+ </details>
200
+ -->
201
+
202
+ <!--
203
+ ### Downstream Usage (Sentence Transformers)
204
+
205
+ You can finetune this model on your own dataset.
206
+
207
+ <details><summary>Click to expand</summary>
208
+
209
+ </details>
210
+ -->
211
+
212
+ <!--
213
+ ### Out-of-Scope Use
214
+
215
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
216
+ -->
217
+
218
+ ## Evaluation
219
+
220
+ ### Metrics
221
+
222
+ #### Semantic Similarity
223
+ * Dataset: `sts-test`
224
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
225
+
226
+ | Metric | Value |
227
+ |:--------------------|:-----------|
228
+ | pearson_cosine | 0.8704 |
229
+ | **spearman_cosine** | **0.8723** |
230
+ | pearson_manhattan | 0.824 |
231
+ | spearman_manhattan | 0.8326 |
232
+ | pearson_euclidean | 0.8243 |
233
+ | spearman_euclidean | 0.8328 |
234
+ | pearson_dot | 0.7561 |
235
+ | spearman_dot | 0.7733 |
236
+ | pearson_max | 0.8704 |
237
+ | spearman_max | 0.8723 |
238
+
239
+ #### Semantic Similarity
240
+ * Dataset: `sts-test`
241
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
242
+
243
+ | Metric | Value |
244
+ |:--------------------|:-----------|
245
+ | pearson_cosine | 0.8341 |
246
+ | **spearman_cosine** | **0.8312** |
247
+ | pearson_manhattan | 0.8121 |
248
+ | spearman_manhattan | 0.8103 |
249
+ | pearson_euclidean | 0.8124 |
250
+ | spearman_euclidean | 0.8106 |
251
+ | pearson_dot | 0.6947 |
252
+ | spearman_dot | 0.6858 |
253
+ | pearson_max | 0.8341 |
254
+ | spearman_max | 0.8312 |
255
+
256
+ <!--
257
+ ## Bias, Risks and Limitations
258
+
259
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
260
+ -->
261
+
262
+ <!--
263
+ ### Recommendations
264
+
265
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
266
+ -->
267
+
268
+ ## Training Details
269
+
270
+ ### Training Dataset
271
+
272
+ #### sentence-transformers/stsb
273
+
274
+ * Dataset: [sentence-transformers/stsb](https://huggingface.co/datasets/sentence-transformers/stsb)
275
+ * Size: 20,127 training samples
276
+ * Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
277
+ * Approximate statistics based on the first 1000 samples:
278
+ | | sentence1 | sentence2 | score |
279
+ |:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------|
280
+ | type | string | string | float |
281
+ | details | <ul><li>min: 6 tokens</li><li>mean: 10.0 tokens</li><li>max: 28 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 9.95 tokens</li><li>max: 25 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.47</li><li>max: 1.0</li></ul> |
282
+ * Samples:
283
+ | sentence1 | sentence2 | score |
284
+ |:-----------------------------------------------------------|:----------------------------------------------------------------------|:------------------|
285
+ | <code>A plane is taking off.</code> | <code>An air plane is taking off.</code> | <code>1.0</code> |
286
+ | <code>A man is playing a large flute.</code> | <code>A man is playing a flute.</code> | <code>0.76</code> |
287
+ | <code>A man is spreading shreded cheese on a pizza.</code> | <code>A man is spreading shredded cheese on an uncooked pizza.</code> | <code>0.76</code> |
288
+ * Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
289
+ ```json
290
+ {
291
+ "loss_fct": "torch.nn.modules.loss.MSELoss"
292
+ }
293
+ ```
294
+
295
+ ### Evaluation Dataset
296
+
297
+ #### sentence-transformers/stsb
298
+
299
+ * Dataset: [sentence-transformers/stsb](https://huggingface.co/datasets/sentence-transformers/stsb)
300
+ * Size: 1,500 evaluation samples
301
+ * Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
302
+ * Approximate statistics based on the first 1000 samples:
303
+ | | sentence1 | sentence2 | score |
304
+ |:--------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
305
+ | type | string | string | float |
306
+ | details | <ul><li>min: 5 tokens</li><li>mean: 15.1 tokens</li><li>max: 45 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 15.11 tokens</li><li>max: 53 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.47</li><li>max: 1.0</li></ul> |
307
+ * Samples:
308
+ | sentence1 | sentence2 | score |
309
+ |:--------------------------------------------------|:------------------------------------------------------|:------------------|
310
+ | <code>A man with a hard hat is dancing.</code> | <code>A man wearing a hard hat is dancing.</code> | <code>1.0</code> |
311
+ | <code>A young child is riding a horse.</code> | <code>A child is riding a horse.</code> | <code>0.95</code> |
312
+ | <code>A man is feeding a mouse to a snake.</code> | <code>The man is feeding a mouse to the snake.</code> | <code>1.0</code> |
313
+ * Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
314
+ ```json
315
+ {
316
+ "loss_fct": "torch.nn.modules.loss.MSELoss"
317
+ }
318
+ ```
319
+
320
+ ### Training Hyperparameters
321
+ #### Non-Default Hyperparameters
322
+
323
+ - `eval_strategy`: steps
324
+ - `per_device_train_batch_size`: 16
325
+ - `per_device_eval_batch_size`: 16
326
+ - `num_train_epochs`: 1
327
+ - `warmup_ratio`: 0.1
328
+ - `fp16`: True
329
+
330
+ #### All Hyperparameters
331
+ <details><summary>Click to expand</summary>
332
+
333
+ - `overwrite_output_dir`: False
334
+ - `do_predict`: False
335
+ - `eval_strategy`: steps
336
+ - `prediction_loss_only`: True
337
+ - `per_device_train_batch_size`: 16
338
+ - `per_device_eval_batch_size`: 16
339
+ - `per_gpu_train_batch_size`: None
340
+ - `per_gpu_eval_batch_size`: None
341
+ - `gradient_accumulation_steps`: 1
342
+ - `eval_accumulation_steps`: None
343
+ - `torch_empty_cache_steps`: None
344
+ - `learning_rate`: 5e-05
345
+ - `weight_decay`: 0.0
346
+ - `adam_beta1`: 0.9
347
+ - `adam_beta2`: 0.999
348
+ - `adam_epsilon`: 1e-08
349
+ - `max_grad_norm`: 1.0
350
+ - `num_train_epochs`: 1
351
+ - `max_steps`: -1
352
+ - `lr_scheduler_type`: linear
353
+ - `lr_scheduler_kwargs`: {}
354
+ - `warmup_ratio`: 0.1
355
+ - `warmup_steps`: 0
356
+ - `log_level`: passive
357
+ - `log_level_replica`: warning
358
+ - `log_on_each_node`: True
359
+ - `logging_nan_inf_filter`: True
360
+ - `save_safetensors`: True
361
+ - `save_on_each_node`: False
362
+ - `save_only_model`: False
363
+ - `restore_callback_states_from_checkpoint`: False
364
+ - `no_cuda`: False
365
+ - `use_cpu`: False
366
+ - `use_mps_device`: False
367
+ - `seed`: 42
368
+ - `data_seed`: None
369
+ - `jit_mode_eval`: False
370
+ - `use_ipex`: False
371
+ - `bf16`: False
372
+ - `fp16`: True
373
+ - `fp16_opt_level`: O1
374
+ - `half_precision_backend`: auto
375
+ - `bf16_full_eval`: False
376
+ - `fp16_full_eval`: False
377
+ - `tf32`: None
378
+ - `local_rank`: 0
379
+ - `ddp_backend`: None
380
+ - `tpu_num_cores`: None
381
+ - `tpu_metrics_debug`: False
382
+ - `debug`: []
383
+ - `dataloader_drop_last`: False
384
+ - `dataloader_num_workers`: 0
385
+ - `dataloader_prefetch_factor`: None
386
+ - `past_index`: -1
387
+ - `disable_tqdm`: False
388
+ - `remove_unused_columns`: True
389
+ - `label_names`: None
390
+ - `load_best_model_at_end`: False
391
+ - `ignore_data_skip`: False
392
+ - `fsdp`: []
393
+ - `fsdp_min_num_params`: 0
394
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
395
+ - `fsdp_transformer_layer_cls_to_wrap`: None
396
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
397
+ - `deepspeed`: None
398
+ - `label_smoothing_factor`: 0.0
399
+ - `optim`: adamw_torch
400
+ - `optim_args`: None
401
+ - `adafactor`: False
402
+ - `group_by_length`: False
403
+ - `length_column_name`: length
404
+ - `ddp_find_unused_parameters`: None
405
+ - `ddp_bucket_cap_mb`: None
406
+ - `ddp_broadcast_buffers`: False
407
+ - `dataloader_pin_memory`: True
408
+ - `dataloader_persistent_workers`: False
409
+ - `skip_memory_metrics`: True
410
+ - `use_legacy_prediction_loop`: False
411
+ - `push_to_hub`: False
412
+ - `resume_from_checkpoint`: None
413
+ - `hub_model_id`: None
414
+ - `hub_strategy`: every_save
415
+ - `hub_private_repo`: False
416
+ - `hub_always_push`: False
417
+ - `gradient_checkpointing`: False
418
+ - `gradient_checkpointing_kwargs`: None
419
+ - `include_inputs_for_metrics`: False
420
+ - `eval_do_concat_batches`: True
421
+ - `fp16_backend`: auto
422
+ - `push_to_hub_model_id`: None
423
+ - `push_to_hub_organization`: None
424
+ - `mp_parameters`:
425
+ - `auto_find_batch_size`: False
426
+ - `full_determinism`: False
427
+ - `torchdynamo`: None
428
+ - `ray_scope`: last
429
+ - `ddp_timeout`: 1800
430
+ - `torch_compile`: False
431
+ - `torch_compile_backend`: None
432
+ - `torch_compile_mode`: None
433
+ - `dispatch_batches`: None
434
+ - `split_batches`: None
435
+ - `include_tokens_per_second`: False
436
+ - `include_num_input_tokens_seen`: False
437
+ - `neftune_noise_alpha`: None
438
+ - `optim_target_modules`: None
439
+ - `batch_eval_metrics`: False
440
+ - `eval_on_start`: False
441
+ - `eval_use_gather_object`: False
442
+ - `batch_sampler`: batch_sampler
443
+ - `multi_dataset_batch_sampler`: proportional
444
+
445
+ </details>
446
+
447
+ ### Training Logs
448
+ | Epoch | Step | Training Loss | loss | sts-test_spearman_cosine |
449
+ |:------:|:----:|:-------------:|:------:|:------------------------:|
450
+ | 0.0795 | 100 | 0.0526 | 0.0390 | 0.8215 |
451
+ | 0.1590 | 200 | 0.0218 | 0.0335 | 0.8415 |
452
+ | 0.2385 | 300 | 0.0186 | 0.0310 | 0.8561 |
453
+ | 0.3180 | 400 | 0.0166 | 0.0341 | 0.8479 |
454
+ | 0.3975 | 500 | 0.0176 | 0.0313 | 0.8503 |
455
+ | 0.4769 | 600 | 0.0155 | 0.0281 | 0.8652 |
456
+ | 0.5564 | 700 | 0.0148 | 0.0270 | 0.8656 |
457
+ | 0.6359 | 800 | 0.014 | 0.0277 | 0.8669 |
458
+ | 0.7154 | 900 | 0.0149 | 0.0286 | 0.8694 |
459
+ | 0.7949 | 1000 | 0.0125 | 0.0281 | 0.8724 |
460
+ | 0.8744 | 1100 | 0.013 | 0.0285 | 0.8694 |
461
+ | 0.9539 | 1200 | 0.0127 | 0.0269 | 0.8723 |
462
+ | 1.0 | 1258 | - | - | 0.8312 |
463
+
464
+
465
+ ### Framework Versions
466
+ - Python: 3.9.2
467
+ - Sentence Transformers: 3.0.1
468
+ - Transformers: 4.43.1
469
+ - PyTorch: 2.3.1+cu121
470
+ - Accelerate: 0.34.2
471
+ - Datasets: 2.14.7
472
+ - Tokenizers: 0.19.1
473
+
474
+ ## Citation
475
+
476
+ ### BibTeX
477
+
478
+ #### Sentence Transformers
479
+ ```bibtex
480
+ @inproceedings{reimers-2019-sentence-bert,
481
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
482
+ author = "Reimers, Nils and Gurevych, Iryna",
483
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
484
+ month = "11",
485
+ year = "2019",
486
+ publisher = "Association for Computational Linguistics",
487
+ url = "https://arxiv.org/abs/1908.10084",
488
+ }
489
+ ```
490
+
491
+ <!--
492
+ ## Glossary
493
+
494
+ *Clearly define terms in order to be accessible across audiences.*
495
+ -->
496
+
497
+ <!--
498
+ ## Model Card Authors
499
+
500
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
501
+ -->
502
+
503
+ <!--
504
+ ## Model Card Contact
505
+
506
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
507
+ -->
config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "bert-base-uncased",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "gradient_checkpointing": false,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 768,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 3072,
14
+ "layer_norm_eps": 1e-12,
15
+ "max_position_embeddings": 512,
16
+ "model_type": "bert",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 12,
19
+ "pad_token_id": 0,
20
+ "position_embedding_type": "absolute",
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.43.1",
23
+ "type_vocab_size": 2,
24
+ "use_cache": true,
25
+ "vocab_size": 30522
26
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.0.1",
4
+ "transformers": "4.43.1",
5
+ "pytorch": "2.3.1+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:23922027afa7a3f5d389463d4dee301ee6bcf54869bc22efb3a2828ca5fd9abd
3
+ size 437951328
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 128,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": "[CLS]",
3
+ "mask_token": "[MASK]",
4
+ "pad_token": "[PAD]",
5
+ "sep_token": "[SEP]",
6
+ "unk_token": "[UNK]"
7
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,55 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_lower_case": true,
47
+ "mask_token": "[MASK]",
48
+ "model_max_length": 512,
49
+ "pad_token": "[PAD]",
50
+ "sep_token": "[SEP]",
51
+ "strip_accents": null,
52
+ "tokenize_chinese_chars": true,
53
+ "tokenizer_class": "BertTokenizer",
54
+ "unk_token": "[UNK]"
55
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff