armansakif commited on
Commit
196f602
1 Parent(s): ecfad8b

model card init

Browse files

initial descriptions added in model card. Which include citation to arxiv preprint.

Files changed (1) hide show
  1. README.md +45 -0
README.md CHANGED
@@ -1,3 +1,48 @@
1
  ---
2
  license: cc-by-nc-sa-4.0
 
 
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: cc-by-nc-sa-4.0
3
+ language:
4
+ - bn
5
+ library_name: transformers
6
+ tags:
7
+ - Pytorch
8
+ - Bengali Fake News
9
  ---
10
+ # Model Description
11
+
12
+ This is Bengali Fake News detection model, version 1.0. This model was introduced in [this paper](https://arxiv.org/pdf/2307.06979.pdf).
13
+ An original implementation is deployed in [this](https://huggingface.co/spaces/armansakif/BenFake) huggingface space.
14
+
15
+ Model type: deep learning classifier
16
+
17
+ Finetuned From Model : https://huggingface.co/bert-base-multilingual-cased
18
+ ## How to load this model using `transformers` (tested on 4.31.0-py3)
19
+ ```python
20
+ from transformers import BertTokenizer, AutoTokenizer
21
+ from transformers import BertForSequenceClassification, AdamW, BertConfig
22
+
23
+ tokenizer = AutoTokenizer.from_pretrained('armansakif/bengali-fake-news')
24
+
25
+ model = BertForSequenceClassification.from_pretrained(
26
+ "armansakif/bengali-fake-news", # Use the 12-layer BERT model, with an uncased vocab.
27
+ num_labels = 2, # The number of output labels--2 for binary classification.
28
+ # You can increase this for multi-class tasks.
29
+ output_attentions = False, # Whether the model returns attentions weights.
30
+ output_hidden_states = False, # Whether the model returns all hidden-states.
31
+ )
32
+
33
+ ```
34
+
35
+ ## Citation
36
+ If you use this model, please cite the following paper:
37
+ BibTeX:
38
+ ```
39
+ @article{chowdhury2023tackling,
40
+ title={Tackling Fake News in Bengali: Unraveling the Impact of Summarization vs. Augmentation on Pre-trained Language Models},
41
+ author={Chowdhury, Arman Sakif and Shahariar, GM and Aziz, Ahammed Tarik and Alam, Syed Mohibul and Sheikh, Md Azad and Belal, Tanveer Ahmed},
42
+ journal={arXiv preprint arXiv:2307.06979},
43
+ year={2023}
44
+ }
45
+ ```
46
+
47
+ ### APA:
48
+ Chowdhury, A. S., Shahariar, G. M., Aziz, A. T., Alam, S. M., Sheikh, M. A., & Belal, T. A. (2023). Tackling Fake News in Bengali: Unraveling the Impact of Summarization vs. Augmentation on Pre-trained Language Models. arXiv preprint arXiv:2307.06979.