--- license: mit base_model: SCUT-DLVCLab/lilt-roberta-en-base tags: - generated_from_trainer datasets: - funsd-layoutlmv3 model-index: - name: lilt-en-funsd results: [] --- # lilt-en-funsd This model is a fine-tuned version of [SCUT-DLVCLab/lilt-roberta-en-base](https://huggingface.co/SCUT-DLVCLab/lilt-roberta-en-base) on the funsd-layoutlmv3 dataset. It achieves the following results on the evaluation set: - Loss: 0.0001 - Account Name.key: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 1} - Account Name.value: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 1} - Account No.key: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 1} - Account No.value: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 1} - Overall Precision: 1.0 - Overall Recall: 1.0 - Overall F1: 1.0 - Overall Accuracy: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 2500 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Account Name.key | Account Name.value | Account No.key | Account No.value | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy | |:-------------:|:------:|:----:|:---------------:|:---------------------------------------------------------:|:---------------------------------------------------------:|:---------------------------------------------------------:|:---------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:| | 0.0635 | 100.0 | 200 | 0.0001 | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 1} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 1} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 1} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 1} | 1.0 | 1.0 | 1.0 | 1.0 | | 0.0002 | 200.0 | 400 | 0.0000 | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 1} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 1} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 1} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 1} | 1.0 | 1.0 | 1.0 | 1.0 | | 0.0001 | 300.0 | 600 | 0.0000 | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 1} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 1} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 1} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 1} | 1.0 | 1.0 | 1.0 | 1.0 | | 0.0001 | 400.0 | 800 | 0.0000 | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 1} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 1} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 1} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 1} | 1.0 | 1.0 | 1.0 | 1.0 | | 0.0001 | 500.0 | 1000 | 0.0000 | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 1} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 1} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 1} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 1} | 1.0 | 1.0 | 1.0 | 1.0 | | 0.0 | 600.0 | 1200 | 0.0000 | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 1} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 1} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 1} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 1} | 1.0 | 1.0 | 1.0 | 1.0 | | 0.0 | 700.0 | 1400 | 0.0000 | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 1} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 1} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 1} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 1} | 1.0 | 1.0 | 1.0 | 1.0 | | 0.0 | 800.0 | 1600 | 0.0000 | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 1} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 1} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 1} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 1} | 1.0 | 1.0 | 1.0 | 1.0 | | 0.0 | 900.0 | 1800 | 0.0000 | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 1} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 1} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 1} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 1} | 1.0 | 1.0 | 1.0 | 1.0 | | 0.0 | 1000.0 | 2000 | 0.0000 | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 1} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 1} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 1} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 1} | 1.0 | 1.0 | 1.0 | 1.0 | | 0.0 | 1100.0 | 2200 | 0.0000 | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 1} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 1} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 1} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 1} | 1.0 | 1.0 | 1.0 | 1.0 | | 0.0 | 1200.0 | 2400 | 0.0000 | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 1} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 1} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 1} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 1} | 1.0 | 1.0 | 1.0 | 1.0 | ### Framework versions - Transformers 4.35.0 - Pytorch 2.1.0+cu118 - Datasets 2.14.6 - Tokenizers 0.14.1