File size: 1,828 Bytes
ee2cc5a 5abac88 ee2cc5a 7582a25 ee2cc5a a18ce6a 3c10837 e370c0a 5248b8c ee2cc5a 7582a25 ee2cc5a 99a54a2 4453163 ee2cc5a 08cad7e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 |
---
license: apache-2.0
base_model: google/vit-base-patch16-384
tags:
- generated_from_trainer
- climate
- biology
metrics:
- accuracy
model-index:
- name: wildfire-classifier
results: []
widget:
- src: https://news.erau.edu/-/media/images/news/headlines/january-2023/wildfire-overhead-drone-shot.jpg?h=749&w=1000&hash=13476D2A9BBA829375B2EB7E83588E18
example_title: Drone-shot
- src: https://www.ecuadorforestofclouds.org/uploads/7/4/1/4/74143387/2015367_orig.jpg
example_title: Cloudy forest
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Wildfire classifier
This model is a fine-tuned version of [google/vit-base-patch16-384](https://huggingface.co/google/vit-base-patch16-384) on the
[Kaggle Wildfire Dataset](https://www.kaggle.com/datasets/elmadafri/the-wildfire-dataset).
It achieves the following results on the evaluation set:
- Loss: 0.2329
- Accuracy: 0.9202
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.1208 | 1.28 | 100 | 0.2329 | 0.9202 |
| 0.0261 | 2.56 | 200 | 0.2469 | 0.9316 |
| 0.0007 | 3.85 | 300 | 0.2358 | 0.9392 |
### Framework versions
- Transformers 4.33.2
- Pytorch 2.0.1+cu117
- Datasets 2.14.5
- Tokenizers 0.13.3
### Aditional resources
[Fine-tuning tutorial](https://huggingface.co/blog/fine-tune-vit) |