Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,49 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Tiny-LLM
|
2 |
+
|
3 |
+
A Tiny LLM model with just 10 Million parameters, this is probably one of the small LLM arounds, and it is functional.
|
4 |
+
|
5 |
+
## Pretraining
|
6 |
+
|
7 |
+
Tiny-LLM was trained on 32B tokens of the Fineweb dataset, with a context length of 1024 tokens.
|
8 |
+
|
9 |
+
## Getting Started
|
10 |
+
|
11 |
+
To start using these models, you can simply load them via the Hugging Face `transformers` library:
|
12 |
+
|
13 |
+
```python
|
14 |
+
import torch
|
15 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
16 |
+
|
17 |
+
|
18 |
+
MODEL_NAME = "arnir0/Tiny-LLM"
|
19 |
+
|
20 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
21 |
+
model = AutoModelForCausalLM.from_pretrained(MODEL_NAME)
|
22 |
+
|
23 |
+
def generate_text(prompt, model, tokenizer, max_length=512, temperature=1, top_k=50, top_p=0.95):
|
24 |
+
inputs = tokenizer.encode(prompt, return_tensors="pt")
|
25 |
+
|
26 |
+
outputs = model.generate(
|
27 |
+
inputs,
|
28 |
+
max_length=max_length,
|
29 |
+
temperature=temperature,
|
30 |
+
top_k=top_k,
|
31 |
+
top_p=top_p,
|
32 |
+
do_sample=True
|
33 |
+
)
|
34 |
+
|
35 |
+
|
36 |
+
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
37 |
+
return generated_text
|
38 |
+
|
39 |
+
def main():
|
40 |
+
# Define your prompt
|
41 |
+
prompt = "According to all known laws of aviation, there is no way a bee should be able to fly."
|
42 |
+
|
43 |
+
generated_text = generate_text(prompt, model, tokenizer)
|
44 |
+
|
45 |
+
print(generated_text)
|
46 |
+
|
47 |
+
if __name__ == "__main__":
|
48 |
+
main()
|
49 |
+
```
|