arpan-das-astrophysics
commited on
Commit
•
c99636e
1
Parent(s):
d3594ba
Initial commit
Browse files- README.md +37 -0
- a2c-PandaReachDense-v2.zip +3 -0
- a2c-PandaReachDense-v2/_stable_baselines3_version +1 -0
- a2c-PandaReachDense-v2/data +95 -0
- a2c-PandaReachDense-v2/policy.optimizer.pth +3 -0
- a2c-PandaReachDense-v2/policy.pth +3 -0
- a2c-PandaReachDense-v2/pytorch_variables.pth +3 -0
- a2c-PandaReachDense-v2/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- PandaReachDense-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: PandaReachDense-v2
|
16 |
+
type: PandaReachDense-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -1.51 +/- 0.48
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **PandaReachDense-v2**
|
25 |
+
This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-PandaReachDense-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c39968103b98fbee1ed089b6d10b5ce8fa653b6637d2f9ec69e33ee4f2d97eb1
|
3 |
+
size 108038
|
a2c-PandaReachDense-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.8.0
|
a2c-PandaReachDense-v2/data
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x78df6cf57010>",
|
8 |
+
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc._abc_data object at 0x78df6cf43c00>"
|
10 |
+
},
|
11 |
+
"verbose": 1,
|
12 |
+
"policy_kwargs": {
|
13 |
+
":type:": "<class 'dict'>",
|
14 |
+
":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
|
15 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
16 |
+
"optimizer_kwargs": {
|
17 |
+
"alpha": 0.99,
|
18 |
+
"eps": 1e-05,
|
19 |
+
"weight_decay": 0
|
20 |
+
}
|
21 |
+
},
|
22 |
+
"num_timesteps": 1000000,
|
23 |
+
"_total_timesteps": 1000000,
|
24 |
+
"_num_timesteps_at_start": 0,
|
25 |
+
"seed": null,
|
26 |
+
"action_noise": null,
|
27 |
+
"start_time": 1691265150959282190,
|
28 |
+
"learning_rate": 0.0007,
|
29 |
+
"tensorboard_log": null,
|
30 |
+
"lr_schedule": {
|
31 |
+
":type:": "<class 'function'>",
|
32 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
33 |
+
},
|
34 |
+
"_last_obs": {
|
35 |
+
":type:": "<class 'collections.OrderedDict'>",
|
36 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAXq3TPkcCtzwO+hU/Xq3TPkcCtzwO+hU/Xq3TPkcCtzwO+hU/Xq3TPkcCtzwO+hU/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAkatAv+7oaj/XoUm/aI2wvg16tz8dZe27jhHyvRpZzL+ocZS/h3uav0LCzT7TSHc/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAABerdM+RwK3PA76FT8kymI8N3l+O8NSbzxerdM+RwK3PA76FT8kymI8N3l+O8NSbzxerdM+RwK3PA76FT8kymI8N3l+O8NSbzxerdM+RwK3PA76FT8kymI8N3l+O8NSbzyUaA5LBEsGhpRoEnSUUpR1Lg==",
|
37 |
+
"achieved_goal": "[[0.41343206 0.02233995 0.5858468 ]\n [0.41343206 0.02233995 0.5858468 ]\n [0.41343206 0.02233995 0.5858468 ]\n [0.41343206 0.02233995 0.5858468 ]]",
|
38 |
+
"desired_goal": "[[-0.7526179 0.9176167 -0.78762573]\n [-0.34482884 1.4334122 -0.00724472]\n [-0.11819755 -1.5964692 -1.1597185 ]\n [-1.2068948 0.4018727 0.96595496]]",
|
39 |
+
"observation": "[[0.41343206 0.02233995 0.5858468 0.01384214 0.00388296 0.01460713]\n [0.41343206 0.02233995 0.5858468 0.01384214 0.00388296 0.01460713]\n [0.41343206 0.02233995 0.5858468 0.01384214 0.00388296 0.01460713]\n [0.41343206 0.02233995 0.5858468 0.01384214 0.00388296 0.01460713]]"
|
40 |
+
},
|
41 |
+
"_last_episode_starts": {
|
42 |
+
":type:": "<class 'numpy.ndarray'>",
|
43 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
44 |
+
},
|
45 |
+
"_last_original_obs": {
|
46 |
+
":type:": "<class 'collections.OrderedDict'>",
|
47 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA7KuXut0Eqr20SFM+vLdOPSdcvD1I6cs9YbqxvZIg2rxb9Aw+WNPsvb74Ab2e7+49lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
|
48 |
+
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
49 |
+
"desired_goal": "[[-0.00115716 -0.08301709 0.20633203]\n [ 0.05046819 0.09197264 0.09956604]\n [-0.08678127 -0.02662686 0.13765089]\n [-0.11563748 -0.03173136 0.11666797]]",
|
50 |
+
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
51 |
+
},
|
52 |
+
"_episode_num": 0,
|
53 |
+
"use_sde": false,
|
54 |
+
"sde_sample_freq": -1,
|
55 |
+
"_current_progress_remaining": 0.0,
|
56 |
+
"_stats_window_size": 100,
|
57 |
+
"ep_info_buffer": {
|
58 |
+
":type:": "<class 'collections.deque'>",
|
59 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIFokJaviW47+UhpRSlIwBbJRLMowBdJRHQKej/3ztkWh1fZQoaAZoCWgPQwig/N07akzav5SGlFKUaBVLMmgWR0Cno8BNVR1pdX2UKGgGaAloD0MIvOtsyD+z5b+UhpRSlGgVSzJoFkdAp6OC5CngpHV9lChoBmgJaA9DCLde04OC0uW/lIaUUpRoFUsyaBZHQKejRV6NVBF1fZQoaAZoCWgPQwiQoPgx5i7gv5SGlFKUaBVLMmgWR0CnpSh06o2odX2UKGgGaAloD0MISpaTUPpC47+UhpRSlGgVSzJoFkdAp6TpVAAyVXV9lChoBmgJaA9DCOYffZOmwei/lIaUUpRoFUsyaBZHQKekq9V3ljp1fZQoaAZoCWgPQwiCjevf9Znhv5SGlFKUaBVLMmgWR0CnpG5E2HcldX2UKGgGaAloD0MIfzDw3Hu45b+UhpRSlGgVSzJoFkdAp6ZYPmPo3nV9lChoBmgJaA9DCIlgHFw65tS/lIaUUpRoFUsyaBZHQKemGRWcSXd1fZQoaAZoCWgPQwitodReRNvbv5SGlFKUaBVLMmgWR0CnpdvV3EAHdX2UKGgGaAloD0MIoz1eSIeH3L+UhpRSlGgVSzJoFkdAp6WeWrwOOXV9lChoBmgJaA9DCA/UKY9uhNy/lIaUUpRoFUsyaBZHQKeoH9PUKAt1fZQoaAZoCWgPQwjYnINnQhPkv5SGlFKUaBVLMmgWR0Cnp+K+rU9ZdX2UKGgGaAloD0MIhUIEHEKV1r+UhpRSlGgVSzJoFkdAp6emG21D0HV9lChoBmgJaA9DCP7tsl93ut+/lIaUUpRoFUsyaBZHQKenaWl/H5t1fZQoaAZoCWgPQwgyyjMvh13nv5SGlFKUaBVLMmgWR0Cnqf/DDTBqdX2UKGgGaAloD0MIyGDFqdbC4L+UhpRSlGgVSzJoFkdAp6nBZdOZcHV9lChoBmgJaA9DCOoHdZFCWeG/lIaUUpRoFUsyaBZHQKephLt/nW91fZQoaAZoCWgPQwgqjC0EOSjdv5SGlFKUaBVLMmgWR0CnqUf0/W1/dX2UKGgGaAloD0MIAtcVM8Lb4r+UhpRSlGgVSzJoFkdAp6vqWom5UnV9lChoBmgJaA9DCB8PfXcrS9u/lIaUUpRoFUsyaBZHQKerrDQZ4wB1fZQoaAZoCWgPQwh2+kFdpFDav5SGlFKUaBVLMmgWR0Cnq2+10DEFdX2UKGgGaAloD0MIE0TdByC117+UhpRSlGgVSzJoFkdAp6szN+so2HV9lChoBmgJaA9DCH8zMV2I1ee/lIaUUpRoFUsyaBZHQKet1NahYeV1fZQoaAZoCWgPQwg/GePD7GXov5SGlFKUaBVLMmgWR0CnrZazVtoBdX2UKGgGaAloD0MI9S1zuiwm57+UhpRSlGgVSzJoFkdAp61a8g6ltXV9lChoBmgJaA9DCH2tS43Qz+S/lIaUUpRoFUsyaBZHQKetHkXDWLB1fZQoaAZoCWgPQwisUnqml5jtv5SGlFKUaBVLMmgWR0Cnrx4D9wWFdX2UKGgGaAloD0MIebDFbp9V6r+UhpRSlGgVSzJoFkdAp67e0iQkonV9lChoBmgJaA9DCJNzYg/t4+C/lIaUUpRoFUsyaBZHQKeuoY3vQWx1fZQoaAZoCWgPQwhbBwd7E0Pmv5SGlFKUaBVLMmgWR0CnrmPfsNUgdX2UKGgGaAloD0MI9ihcj8L1yr+UhpRSlGgVSzJoFkdAp7BG89Oh03V9lChoBmgJaA9DCGuZDMfzGdu/lIaUUpRoFUsyaBZHQKewB8ZUDMh1fZQoaAZoCWgPQwj60XDK3Pzov5SGlFKUaBVLMmgWR0Cnr8pcHGCJdX2UKGgGaAloD0MIQfUPIhly47+UhpRSlGgVSzJoFkdAp6+MyrPt2XV9lChoBmgJaA9DCF9E2zF1V9q/lIaUUpRoFUsyaBZHQKexbB68g6l1fZQoaAZoCWgPQwg7/aAuUqjiv5SGlFKUaBVLMmgWR0CnsSzbN8mbdX2UKGgGaAloD0MIV9Efmnny5r+UhpRSlGgVSzJoFkdAp7DvfVI7NnV9lChoBmgJaA9DCMlZ2NMOf9C/lIaUUpRoFUsyaBZHQKewshN/OMV1fZQoaAZoCWgPQwjJdr6fGi/nv5SGlFKUaBVLMmgWR0CnspctXgccdX2UKGgGaAloD0MIoFG69C9Jxb+UhpRSlGgVSzJoFkdAp7JYOUdJa3V9lChoBmgJaA9DCGvylNV0vee/lIaUUpRoFUsyaBZHQKeyGsPrfLt1fZQoaAZoCWgPQwg/yLJg4o/gv5SGlFKUaBVLMmgWR0Cnsd0x20RfdX2UKGgGaAloD0MIwJZXrrfNyr+UhpRSlGgVSzJoFkdAp7PB4D9wWHV9lChoBmgJaA9DCDQRNjy90uG/lIaUUpRoFUsyaBZHQKezgsqaw2V1fZQoaAZoCWgPQwjecYqO5PLav5SGlFKUaBVLMmgWR0Cns0VlPJq7dX2UKGgGaAloD0MIqTEh5pKq3r+UhpRSlGgVSzJoFkdAp7MH0kGA1HV9lChoBmgJaA9DCCr/Wl653uO/lIaUUpRoFUsyaBZHQKe03WWhRIl1fZQoaAZoCWgPQwhXfEPhs3Xlv5SGlFKUaBVLMmgWR0CntJ5Jsfq5dX2UKGgGaAloD0MI5Gcj100p77+UhpRSlGgVSzJoFkdAp7Rg/NZ/1HV9lChoBmgJaA9DCGMraFpiZc6/lIaUUpRoFUsyaBZHQKe0I5+Ytxx1fZQoaAZoCWgPQwiPUZ55OWztv5SGlFKUaBVLMmgWR0CnthYYBNmEdX2UKGgGaAloD0MIvoV1490R8r+UhpRSlGgVSzJoFkdAp7XWtCAtnXV9lChoBmgJaA9DCG+D2m/tBPO/lIaUUpRoFUsyaBZHQKe1mQgcLjR1fZQoaAZoCWgPQwhdpbvrbMjlv5SGlFKUaBVLMmgWR0CntVuDJ2dNdX2UKGgGaAloD0MI/YLdsG3R57+UhpRSlGgVSzJoFkdAp7dAqRU3oHV9lChoBmgJaA9DCOZAD7VtGN2/lIaUUpRoFUsyaBZHQKe3AW2w3YN1fZQoaAZoCWgPQwh48BMH0O/cv5SGlFKUaBVLMmgWR0CntsP2PDHfdX2UKGgGaAloD0MIgO82b5yU4r+UhpRSlGgVSzJoFkdAp7aHOjZcs3V9lChoBmgJaA9DCLb2PlWFRvW/lIaUUpRoFUsyaBZHQKe4exUNrj51fZQoaAZoCWgPQwgO2UC62PT2v5SGlFKUaBVLMmgWR0CnuDu8CgbqdX2UKGgGaAloD0MIuOUjKelh1L+UhpRSlGgVSzJoFkdAp7f+ZkTYd3V9lChoBmgJaA9DCH/6z5of//e/lIaUUpRoFUsyaBZHQKe3wKlYU351fZQoaAZoCWgPQwj4iQPo973yv5SGlFKUaBVLMmgWR0CnuaOn/DLsdX2UKGgGaAloD0MIgsR29wDd3b+UhpRSlGgVSzJoFkdAp7lkcXFcZHV9lChoBmgJaA9DCO1/gLVq19y/lIaUUpRoFUsyaBZHQKe5JwqiGnJ1fZQoaAZoCWgPQwgVqTC2EGTqv5SGlFKUaBVLMmgWR0CnuOm5tm+TdX2UKGgGaAloD0MIz/boDfdR+r+UhpRSlGgVSzJoFkdAp7rFnGsFMnV9lChoBmgJaA9DCFh06zU9KOi/lIaUUpRoFUsyaBZHQKe6hnFHavl1fZQoaAZoCWgPQwhVoYFYNnP5v5SGlFKUaBVLMmgWR0Cnukj9GZuydX2UKGgGaAloD0MIZr6DnzjA8r+UhpRSlGgVSzJoFkdAp7oLcj7hvXV9lChoBmgJaA9DCCPA6V28n+y/lIaUUpRoFUsyaBZHQKe78TufEn91fZQoaAZoCWgPQwg3/dmPFFH+v5SGlFKUaBVLMmgWR0Cnu7HSnccmdX2UKGgGaAloD0MIuTXptkSu67+UhpRSlGgVSzJoFkdAp7t0a0hNd3V9lChoBmgJaA9DCJwwYTQr2/+/lIaUUpRoFUsyaBZHQKe7NvhqCYl1fZQoaAZoCWgPQwj5+ITsvE34v5SGlFKUaBVLMmgWR0CnvPysS00FdX2UKGgGaAloD0MIQWMmUS+4AMCUhpRSlGgVSzJoFkdAp7y9f9gndHV9lChoBmgJaA9DCBXFq6xtivy/lIaUUpRoFUsyaBZHQKe8f+98JD51fZQoaAZoCWgPQwgkuJGyRRL9v5SGlFKUaBVLMmgWR0CnvEJD/lySdX2UKGgGaAloD0MINbbXgt6b9b+UhpRSlGgVSzJoFkdAp74YDifg8HV9lChoBmgJaA9DCC3t1FxusP6/lIaUUpRoFUsyaBZHQKe92Lyc0+F1fZQoaAZoCWgPQwgS2nIuxVX7v5SGlFKUaBVLMmgWR0CnvZwNLDhtdX2UKGgGaAloD0MIFqbvNQTH17+UhpRSlGgVSzJoFkdAp71fcafjCHV9lChoBmgJaA9DCCBe1y/YDey/lIaUUpRoFUsyaBZHQKe/QMaS9uh1fZQoaAZoCWgPQwiis8wiFJsBwJSGlFKUaBVLMmgWR0CnvwIUSIxhdX2UKGgGaAloD0MIxJPdzOjH+L+UhpRSlGgVSzJoFkdAp77EjPfKp3V9lChoBmgJaA9DCBr7ko0Hm/a/lIaUUpRoFUsyaBZHQKe+huejEeh1fZQoaAZoCWgPQwgwaCEBo4v4v5SGlFKUaBVLMmgWR0CnwFWUr08OdX2UKGgGaAloD0MIxOv6Bbuh8b+UhpRSlGgVSzJoFkdAp8AWcpb2UXV9lChoBmgJaA9DCMhCdAgcSf2/lIaUUpRoFUsyaBZHQKe/2MuOCGx1fZQoaAZoCWgPQwjMzw1N2en2v5SGlFKUaBVLMmgWR0Cnv5sbm2b5dX2UKGgGaAloD0MIovFEEOfh+b+UhpRSlGgVSzJoFkdAp8Fk1Q66rnV9lChoBmgJaA9DCFBxHHi1HPq/lIaUUpRoFUsyaBZHQKfBJYukDZF1fZQoaAZoCWgPQwh6UFCKVo4DwJSGlFKUaBVLMmgWR0CnwOhw2l2vdX2UKGgGaAloD0MIX2HB/YAHAcCUhpRSlGgVSzJoFkdAp8Cqo86mwnV9lChoBmgJaA9DCDc5fNKJRPe/lIaUUpRoFUsyaBZHQKfCn7655JN1fZQoaAZoCWgPQwjSHFn5ZTDwv5SGlFKUaBVLMmgWR0CnwmFQdjoZdX2UKGgGaAloD0MIVS5U/rWcBsCUhpRSlGgVSzJoFkdAp8IkjHGS6nV9lChoBmgJaA9DCK8I/reSHfy/lIaUUpRoFUsyaBZHQKfB57Jnxrl1ZS4="
|
60 |
+
},
|
61 |
+
"ep_success_buffer": {
|
62 |
+
":type:": "<class 'collections.deque'>",
|
63 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
64 |
+
},
|
65 |
+
"_n_updates": 50000,
|
66 |
+
"n_steps": 5,
|
67 |
+
"gamma": 0.99,
|
68 |
+
"gae_lambda": 1.0,
|
69 |
+
"ent_coef": 0.0,
|
70 |
+
"vf_coef": 0.5,
|
71 |
+
"max_grad_norm": 0.5,
|
72 |
+
"normalize_advantage": false,
|
73 |
+
"observation_space": {
|
74 |
+
":type:": "<class 'gym.spaces.dict.Dict'>",
|
75 |
+
":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu",
|
76 |
+
"spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
|
77 |
+
"_shape": null,
|
78 |
+
"dtype": null,
|
79 |
+
"_np_random": null
|
80 |
+
},
|
81 |
+
"action_space": {
|
82 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
83 |
+
":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==",
|
84 |
+
"dtype": "float32",
|
85 |
+
"_shape": [
|
86 |
+
3
|
87 |
+
],
|
88 |
+
"low": "[-1. -1. -1.]",
|
89 |
+
"high": "[1. 1. 1.]",
|
90 |
+
"bounded_below": "[ True True True]",
|
91 |
+
"bounded_above": "[ True True True]",
|
92 |
+
"_np_random": null
|
93 |
+
},
|
94 |
+
"n_envs": 4
|
95 |
+
}
|
a2c-PandaReachDense-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0dda896ae97b550a04c34f65bdd664d4d1d539ec507b70a84f687eeed61a7f33
|
3 |
+
size 44734
|
a2c-PandaReachDense-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c5abe5084e799974d843e6b389d8e8ed69261354a0f975381d87118ec71d836e
|
3 |
+
size 46014
|
a2c-PandaReachDense-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-PandaReachDense-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023
|
2 |
+
- Python: 3.10.12
|
3 |
+
- Stable-Baselines3: 1.8.0
|
4 |
+
- PyTorch: 2.0.1+cu118
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x78df6cf57010>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x78df6cf43c00>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1691265150959282190, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAXq3TPkcCtzwO+hU/Xq3TPkcCtzwO+hU/Xq3TPkcCtzwO+hU/Xq3TPkcCtzwO+hU/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAkatAv+7oaj/XoUm/aI2wvg16tz8dZe27jhHyvRpZzL+ocZS/h3uav0LCzT7TSHc/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAABerdM+RwK3PA76FT8kymI8N3l+O8NSbzxerdM+RwK3PA76FT8kymI8N3l+O8NSbzxerdM+RwK3PA76FT8kymI8N3l+O8NSbzxerdM+RwK3PA76FT8kymI8N3l+O8NSbzyUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.41343206 0.02233995 0.5858468 ]\n [0.41343206 0.02233995 0.5858468 ]\n [0.41343206 0.02233995 0.5858468 ]\n [0.41343206 0.02233995 0.5858468 ]]", "desired_goal": "[[-0.7526179 0.9176167 -0.78762573]\n [-0.34482884 1.4334122 -0.00724472]\n [-0.11819755 -1.5964692 -1.1597185 ]\n [-1.2068948 0.4018727 0.96595496]]", "observation": "[[0.41343206 0.02233995 0.5858468 0.01384214 0.00388296 0.01460713]\n [0.41343206 0.02233995 0.5858468 0.01384214 0.00388296 0.01460713]\n [0.41343206 0.02233995 0.5858468 0.01384214 0.00388296 0.01460713]\n [0.41343206 0.02233995 0.5858468 0.01384214 0.00388296 0.01460713]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA7KuXut0Eqr20SFM+vLdOPSdcvD1I6cs9YbqxvZIg2rxb9Aw+WNPsvb74Ab2e7+49lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.00115716 -0.08301709 0.20633203]\n [ 0.05046819 0.09197264 0.09956604]\n [-0.08678127 -0.02662686 0.13765089]\n [-0.11563748 -0.03173136 0.11666797]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIFokJaviW47+UhpRSlIwBbJRLMowBdJRHQKej/3ztkWh1fZQoaAZoCWgPQwig/N07akzav5SGlFKUaBVLMmgWR0Cno8BNVR1pdX2UKGgGaAloD0MIvOtsyD+z5b+UhpRSlGgVSzJoFkdAp6OC5CngpHV9lChoBmgJaA9DCLde04OC0uW/lIaUUpRoFUsyaBZHQKejRV6NVBF1fZQoaAZoCWgPQwiQoPgx5i7gv5SGlFKUaBVLMmgWR0CnpSh06o2odX2UKGgGaAloD0MISpaTUPpC47+UhpRSlGgVSzJoFkdAp6TpVAAyVXV9lChoBmgJaA9DCOYffZOmwei/lIaUUpRoFUsyaBZHQKekq9V3ljp1fZQoaAZoCWgPQwiCjevf9Znhv5SGlFKUaBVLMmgWR0CnpG5E2HcldX2UKGgGaAloD0MIfzDw3Hu45b+UhpRSlGgVSzJoFkdAp6ZYPmPo3nV9lChoBmgJaA9DCIlgHFw65tS/lIaUUpRoFUsyaBZHQKemGRWcSXd1fZQoaAZoCWgPQwitodReRNvbv5SGlFKUaBVLMmgWR0CnpdvV3EAHdX2UKGgGaAloD0MIoz1eSIeH3L+UhpRSlGgVSzJoFkdAp6WeWrwOOXV9lChoBmgJaA9DCA/UKY9uhNy/lIaUUpRoFUsyaBZHQKeoH9PUKAt1fZQoaAZoCWgPQwjYnINnQhPkv5SGlFKUaBVLMmgWR0Cnp+K+rU9ZdX2UKGgGaAloD0MIhUIEHEKV1r+UhpRSlGgVSzJoFkdAp6emG21D0HV9lChoBmgJaA9DCP7tsl93ut+/lIaUUpRoFUsyaBZHQKenaWl/H5t1fZQoaAZoCWgPQwgyyjMvh13nv5SGlFKUaBVLMmgWR0Cnqf/DDTBqdX2UKGgGaAloD0MIyGDFqdbC4L+UhpRSlGgVSzJoFkdAp6nBZdOZcHV9lChoBmgJaA9DCOoHdZFCWeG/lIaUUpRoFUsyaBZHQKephLt/nW91fZQoaAZoCWgPQwgqjC0EOSjdv5SGlFKUaBVLMmgWR0CnqUf0/W1/dX2UKGgGaAloD0MIAtcVM8Lb4r+UhpRSlGgVSzJoFkdAp6vqWom5UnV9lChoBmgJaA9DCB8PfXcrS9u/lIaUUpRoFUsyaBZHQKerrDQZ4wB1fZQoaAZoCWgPQwh2+kFdpFDav5SGlFKUaBVLMmgWR0Cnq2+10DEFdX2UKGgGaAloD0MIE0TdByC117+UhpRSlGgVSzJoFkdAp6szN+so2HV9lChoBmgJaA9DCH8zMV2I1ee/lIaUUpRoFUsyaBZHQKet1NahYeV1fZQoaAZoCWgPQwg/GePD7GXov5SGlFKUaBVLMmgWR0CnrZazVtoBdX2UKGgGaAloD0MI9S1zuiwm57+UhpRSlGgVSzJoFkdAp61a8g6ltXV9lChoBmgJaA9DCH2tS43Qz+S/lIaUUpRoFUsyaBZHQKetHkXDWLB1fZQoaAZoCWgPQwisUnqml5jtv5SGlFKUaBVLMmgWR0Cnrx4D9wWFdX2UKGgGaAloD0MIebDFbp9V6r+UhpRSlGgVSzJoFkdAp67e0iQkonV9lChoBmgJaA9DCJNzYg/t4+C/lIaUUpRoFUsyaBZHQKeuoY3vQWx1fZQoaAZoCWgPQwhbBwd7E0Pmv5SGlFKUaBVLMmgWR0CnrmPfsNUgdX2UKGgGaAloD0MI9ihcj8L1yr+UhpRSlGgVSzJoFkdAp7BG89Oh03V9lChoBmgJaA9DCGuZDMfzGdu/lIaUUpRoFUsyaBZHQKewB8ZUDMh1fZQoaAZoCWgPQwj60XDK3Pzov5SGlFKUaBVLMmgWR0Cnr8pcHGCJdX2UKGgGaAloD0MIQfUPIhly47+UhpRSlGgVSzJoFkdAp6+MyrPt2XV9lChoBmgJaA9DCF9E2zF1V9q/lIaUUpRoFUsyaBZHQKexbB68g6l1fZQoaAZoCWgPQwg7/aAuUqjiv5SGlFKUaBVLMmgWR0CnsSzbN8mbdX2UKGgGaAloD0MIV9Efmnny5r+UhpRSlGgVSzJoFkdAp7DvfVI7NnV9lChoBmgJaA9DCMlZ2NMOf9C/lIaUUpRoFUsyaBZHQKewshN/OMV1fZQoaAZoCWgPQwjJdr6fGi/nv5SGlFKUaBVLMmgWR0CnspctXgccdX2UKGgGaAloD0MIoFG69C9Jxb+UhpRSlGgVSzJoFkdAp7JYOUdJa3V9lChoBmgJaA9DCGvylNV0vee/lIaUUpRoFUsyaBZHQKeyGsPrfLt1fZQoaAZoCWgPQwg/yLJg4o/gv5SGlFKUaBVLMmgWR0Cnsd0x20RfdX2UKGgGaAloD0MIwJZXrrfNyr+UhpRSlGgVSzJoFkdAp7PB4D9wWHV9lChoBmgJaA9DCDQRNjy90uG/lIaUUpRoFUsyaBZHQKezgsqaw2V1fZQoaAZoCWgPQwjecYqO5PLav5SGlFKUaBVLMmgWR0Cns0VlPJq7dX2UKGgGaAloD0MIqTEh5pKq3r+UhpRSlGgVSzJoFkdAp7MH0kGA1HV9lChoBmgJaA9DCCr/Wl653uO/lIaUUpRoFUsyaBZHQKe03WWhRIl1fZQoaAZoCWgPQwhXfEPhs3Xlv5SGlFKUaBVLMmgWR0CntJ5Jsfq5dX2UKGgGaAloD0MI5Gcj100p77+UhpRSlGgVSzJoFkdAp7Rg/NZ/1HV9lChoBmgJaA9DCGMraFpiZc6/lIaUUpRoFUsyaBZHQKe0I5+Ytxx1fZQoaAZoCWgPQwiPUZ55OWztv5SGlFKUaBVLMmgWR0CnthYYBNmEdX2UKGgGaAloD0MIvoV1490R8r+UhpRSlGgVSzJoFkdAp7XWtCAtnXV9lChoBmgJaA9DCG+D2m/tBPO/lIaUUpRoFUsyaBZHQKe1mQgcLjR1fZQoaAZoCWgPQwhdpbvrbMjlv5SGlFKUaBVLMmgWR0CntVuDJ2dNdX2UKGgGaAloD0MI/YLdsG3R57+UhpRSlGgVSzJoFkdAp7dAqRU3oHV9lChoBmgJaA9DCOZAD7VtGN2/lIaUUpRoFUsyaBZHQKe3AW2w3YN1fZQoaAZoCWgPQwh48BMH0O/cv5SGlFKUaBVLMmgWR0CntsP2PDHfdX2UKGgGaAloD0MIgO82b5yU4r+UhpRSlGgVSzJoFkdAp7aHOjZcs3V9lChoBmgJaA9DCLb2PlWFRvW/lIaUUpRoFUsyaBZHQKe4exUNrj51fZQoaAZoCWgPQwgO2UC62PT2v5SGlFKUaBVLMmgWR0CnuDu8CgbqdX2UKGgGaAloD0MIuOUjKelh1L+UhpRSlGgVSzJoFkdAp7f+ZkTYd3V9lChoBmgJaA9DCH/6z5of//e/lIaUUpRoFUsyaBZHQKe3wKlYU351fZQoaAZoCWgPQwj4iQPo973yv5SGlFKUaBVLMmgWR0CnuaOn/DLsdX2UKGgGaAloD0MIgsR29wDd3b+UhpRSlGgVSzJoFkdAp7lkcXFcZHV9lChoBmgJaA9DCO1/gLVq19y/lIaUUpRoFUsyaBZHQKe5JwqiGnJ1fZQoaAZoCWgPQwgVqTC2EGTqv5SGlFKUaBVLMmgWR0CnuOm5tm+TdX2UKGgGaAloD0MIz/boDfdR+r+UhpRSlGgVSzJoFkdAp7rFnGsFMnV9lChoBmgJaA9DCFh06zU9KOi/lIaUUpRoFUsyaBZHQKe6hnFHavl1fZQoaAZoCWgPQwhVoYFYNnP5v5SGlFKUaBVLMmgWR0Cnukj9GZuydX2UKGgGaAloD0MIZr6DnzjA8r+UhpRSlGgVSzJoFkdAp7oLcj7hvXV9lChoBmgJaA9DCCPA6V28n+y/lIaUUpRoFUsyaBZHQKe78TufEn91fZQoaAZoCWgPQwg3/dmPFFH+v5SGlFKUaBVLMmgWR0Cnu7HSnccmdX2UKGgGaAloD0MIuTXptkSu67+UhpRSlGgVSzJoFkdAp7t0a0hNd3V9lChoBmgJaA9DCJwwYTQr2/+/lIaUUpRoFUsyaBZHQKe7NvhqCYl1fZQoaAZoCWgPQwj5+ITsvE34v5SGlFKUaBVLMmgWR0CnvPysS00FdX2UKGgGaAloD0MIQWMmUS+4AMCUhpRSlGgVSzJoFkdAp7y9f9gndHV9lChoBmgJaA9DCBXFq6xtivy/lIaUUpRoFUsyaBZHQKe8f+98JD51fZQoaAZoCWgPQwgkuJGyRRL9v5SGlFKUaBVLMmgWR0CnvEJD/lySdX2UKGgGaAloD0MINbbXgt6b9b+UhpRSlGgVSzJoFkdAp74YDifg8HV9lChoBmgJaA9DCC3t1FxusP6/lIaUUpRoFUsyaBZHQKe92Lyc0+F1fZQoaAZoCWgPQwgS2nIuxVX7v5SGlFKUaBVLMmgWR0CnvZwNLDhtdX2UKGgGaAloD0MIFqbvNQTH17+UhpRSlGgVSzJoFkdAp71fcafjCHV9lChoBmgJaA9DCCBe1y/YDey/lIaUUpRoFUsyaBZHQKe/QMaS9uh1fZQoaAZoCWgPQwiis8wiFJsBwJSGlFKUaBVLMmgWR0CnvwIUSIxhdX2UKGgGaAloD0MIxJPdzOjH+L+UhpRSlGgVSzJoFkdAp77EjPfKp3V9lChoBmgJaA9DCBr7ko0Hm/a/lIaUUpRoFUsyaBZHQKe+huejEeh1fZQoaAZoCWgPQwgwaCEBo4v4v5SGlFKUaBVLMmgWR0CnwFWUr08OdX2UKGgGaAloD0MIxOv6Bbuh8b+UhpRSlGgVSzJoFkdAp8AWcpb2UXV9lChoBmgJaA9DCMhCdAgcSf2/lIaUUpRoFUsyaBZHQKe/2MuOCGx1fZQoaAZoCWgPQwjMzw1N2en2v5SGlFKUaBVLMmgWR0Cnv5sbm2b5dX2UKGgGaAloD0MIovFEEOfh+b+UhpRSlGgVSzJoFkdAp8Fk1Q66rnV9lChoBmgJaA9DCFBxHHi1HPq/lIaUUpRoFUsyaBZHQKfBJYukDZF1fZQoaAZoCWgPQwh6UFCKVo4DwJSGlFKUaBVLMmgWR0CnwOhw2l2vdX2UKGgGaAloD0MIX2HB/YAHAcCUhpRSlGgVSzJoFkdAp8Cqo86mwnV9lChoBmgJaA9DCDc5fNKJRPe/lIaUUpRoFUsyaBZHQKfCn7655JN1fZQoaAZoCWgPQwjSHFn5ZTDwv5SGlFKUaBVLMmgWR0CnwmFQdjoZdX2UKGgGaAloD0MIVS5U/rWcBsCUhpRSlGgVSzJoFkdAp8IkjHGS6nV9lChoBmgJaA9DCK8I/reSHfy/lIaUUpRoFUsyaBZHQKfB57Jnxrl1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
Binary file (630 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -1.5078196277376263, "std_reward": 0.48103912705637464, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-08-05T20:44:29.983165"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5c456ba38f16882a2f73c969704dc6369c83a7a50526e5324363f8d8ad6eaa4f
|
3 |
+
size 2387
|