ppo-LunarLander-v2 / config.json
arpitvaghela's picture
added model1
08e9212
raw
history blame
14.5 kB
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fec19667b00>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fec19667b90>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fec19667c20>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fec19667cb0>", "_build": "<function ActorCriticPolicy._build at 0x7fec19667d40>", "forward": "<function ActorCriticPolicy.forward at 0x7fec19667dd0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fec19667e60>", "_predict": "<function ActorCriticPolicy._predict at 0x7fec19667ef0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fec19667f80>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fec1966d050>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fec1966d0e0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fec19646060>"}, "verbose": 0, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gASVwwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsIhZRoColDIAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsIhZRoColDIAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsIhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsIhZRoKolDCAAAAAAAAAAAlHSUYowKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gASVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1763360, "_total_timesteps": 10000000.0, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1655640867.4471076, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVjQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxBLCIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUIAAgAAzbAwPIjNi7xhF5e9AHMVvTYcaDuaxT89AACAPwAAgD9mjjw8j1Zouvq4LLSFeoKvsWCgOvXelzMAAIA/AACAP5p7Tbzsgve7BqyeOrk/hTxzz2Q9gN9fvQAAgD8AAIA/zQxmvK47gbrQiEmzii+rr8SWJbu2cskzAACAPwAAgD9NRvs9FHF9PmFEjL4kNV6+yj6kvdnfND0AAAAAAAAAAGZGXDp3O38/wMs7PFJ1w74Iol+9cIx0PQAAAAAAAAAAs50RvXs+v7pDHUozyzonL5secDcbmsKzAACAPwAAgD8zftc8PRg5u4WUcLvcxv47aHtNvIJr6TwAAIA/AACAP5rp/juPjmm6YpSoNhwdpzG38bO6pM7JtQAAgD8AAIA/AAkIvueZvT7HfMI+STibvkHw2T1lWHS8AAAAAAAAAACm2Ye9jA2NP0qqwb3L6b6+SHmyvZ5lMr0AAAAAAAAAAABHbj2qI08+XSMAvsHear7P1e05s2tNvAAAAAAAAAAAmqMovLN+wT5zPCo9H7yTvid5Tbv76W48AAAAAAAAAAAm/Uk+SbCDP6O+nz5qMOO+fD+iPqifujwAAAAAAAAAAE0cGb0KBQO7lQfJO0/BpTwtpX48tjOOvQAAgD8AAIA/LZE0PkmVEj8248y+WQBuvprTDL1oZoO+AAAAAAAAAACUdJRiLg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVmAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxCFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDEAAAAAAAAAAAAAAAAAAAAACUdJRiLg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.8246912, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVahAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI0qbqHhmacUCUhpRSlIwBbJRNKgGMAXSUR0CycXVxn3+NdX2UKGgGaAloD0MIoMGmziOWb0CUhpRSlGgVTXcBaBZHQLJxgHO8kD91fZQoaAZoCWgPQwgUs14MJVVwQJSGlFKUaBVNRgFoFkdAsnGZnctXgnV9lChoBmgJaA9DCEjCvp3EA29AlIaUUpRoFU0NAWgWR0CycaD8pCrtdX2UKGgGaAloD0MIYHglybMFckCUhpRSlGgVS/VoFkdAsnHNgVoHs3V9lChoBmgJaA9DCF1RSggW4XFAlIaUUpRoFUv2aBZHQLJyBxnFo+R1fZQoaAZoCWgPQwiNmUS9YNhxQJSGlFKUaBVNJQFoFkdAsnccLhJiAnV9lChoBmgJaA9DCA8PYfw0yG1AlIaUUpRoFU0HAWgWR0CydzXXumaZdX2UKGgGaAloD0MI8mCL3b59cUCUhpRSlGgVTRcBaBZHQLJ3RWaMJhR1fZQoaAZoCWgPQwhlcJS8+uxxQJSGlFKUaBVNUwFoFkdAsndYZpBX0XV9lChoBmgJaA9DCJDaxMm9hXFAlIaUUpRoFU1RAWgWR0Cyd2iP+4smdX2UKGgGaAloD0MI/Wg4ZW6lcECUhpRSlGgVTSQBaBZHQLJ3cibUgB91fZQoaAZoCWgPQwh5spsZPTZyQJSGlFKUaBVL+2gWR0Cyd4oGlhw3dX2UKGgGaAloD0MIRpp4B7hEckCUhpRSlGgVTSYBaBZHQLJ3pWbPQfJ1fZQoaAZoCWgPQwjsTQzJyQNyQJSGlFKUaBVNrwFoFkdAsnevBpHqeXV9lChoBmgJaA9DCMNIL2r3j1BAlIaUUpRoFUvGaBZHQLJ4Bz90ihZ1fZQoaAZoCWgPQwhIUPwY83NxQJSGlFKUaBVL/2gWR0CyeFQo5PuYdX2UKGgGaAloD0MIbkxPWOK0bUCUhpRSlGgVTQgBaBZHQLJ4V8OTaCd1fZQoaAZoCWgPQwgBFvn1Q95vQJSGlFKUaBVNKQFoFkdAsniuW5YozHV9lChoBmgJaA9DCELSp1W0VXJAlIaUUpRoFU0pAWgWR0CyePQBkqc3dX2UKGgGaAloD0MIUZ/kDptPckCUhpRSlGgVTUoBaBZHQLJ5DVfNRm91fZQoaAZoCWgPQwjh8e1dg3lxQJSGlFKUaBVNBgFoFkdAsnkkjbBXS3V9lChoBmgJaA9DCHdM3ZXd2HBAlIaUUpRoFU0jAWgWR0CyeUwHNX5ndX2UKGgGaAloD0MIeCrgnqd5cUCUhpRSlGgVTTwBaBZHQLJ5VD6WPcV1fZQoaAZoCWgPQwiwV1hwvxxvQJSGlFKUaBVNGgFoFkdAsnluHYYixHV9lChoBmgJaA9DCIqsNZRavG9AlIaUUpRoFU0vAWgWR0CyeYT3mFJydX2UKGgGaAloD0MIvFruzAQ7ckCUhpRSlGgVTSIBaBZHQLJ5lSXMQmN1fZQoaAZoCWgPQwi4OgDiLihyQJSGlFKUaBVNKQFoFkdAsnmYgr6LwXV9lChoBmgJaA9DCG6ilubW/3BAlIaUUpRoFU0tAWgWR0Cyeb3/1g6VdX2UKGgGaAloD0MIHyv4bchCcECUhpRSlGgVTUUBaBZHQLJ6EZuyeI51fZQoaAZoCWgPQwiQ9dTqa1NyQJSGlFKUaBVNHQFoFkdAsnoyi35N5HV9lChoBmgJaA9DCKBwdmvZ8HBAlIaUUpRoFU0wAWgWR0Cyeq6mGdqddX2UKGgGaAloD0MIQ4zXvCreb0CUhpRSlGgVTTQBaBZHQLJ6s15B1Ld1fZQoaAZoCWgPQwgv3SQGAVdxQJSGlFKUaBVNAwFoFkdAsnsH5pJwsHV9lChoBmgJaA9DCAniPJzA1nBAlIaUUpRoFU05AWgWR0CyeyCpeeFtdX2UKGgGaAloD0MIpbxWQneHRkCUhpRSlGgVS9loFkdAsnspEPUaynV9lChoBmgJaA9DCKrSFtf4L21AlIaUUpRoFU0TAWgWR0Cyez8G9pRGdX2UKGgGaAloD0MIFjPC24MVcECUhpRSlGgVTQoBaBZHQLJ7W1oQFs51fZQoaAZoCWgPQwj3PH/a6K1wQJSGlFKUaBVNBwFoFkdAsntvkdV/+nV9lChoBmgJaA9DCKn5KvnY2nBAlIaUUpRoFU0nAWgWR0Cye4x0uDjBdX2UKGgGaAloD0MIv2INF3kHcECUhpRSlGgVTVUBaBZHQLJ7mbqQiiZ1fZQoaAZoCWgPQwiwcJLmj6NyQJSGlFKUaBVNEwFoFkdAsnuwcPvrnnV9lChoBmgJaA9DCJ1M3CqIfm9AlIaUUpRoFU0pAWgWR0Cye9HAVO9GdX2UKGgGaAloD0MIgGH5861tcUCUhpRSlGgVTRMBaBZHQLJ71kiUxEh1fZQoaAZoCWgPQwhHBU62QftxQJSGlFKUaBVNAgFoFkdAsnwBqWTouHV9lChoBmgJaA9DCC5Yqgu4FnFAlIaUUpRoFU1nAmgWR0CyfCaoESuhdX2UKGgGaAloD0MI+mGE8GgycUCUhpRSlGgVTSsBaBZHQLJ8Xm9g4Ot1fZQoaAZoCWgPQwhFoWXdv11xQJSGlFKUaBVNJwFoFkdAsnzQOf/WD3V9lChoBmgJaA9DCAQ4vYs3CnBAlIaUUpRoFU0MAWgWR0CyfO45ksjFdX2UKGgGaAloD0MIjuiedY3SbkCUhpRSlGgVTQoBaBZHQLJ9DA9mpVF1fZQoaAZoCWgPQwhDy7p/rNFxQJSGlFKUaBVNRwFoFkdAsn0VWmxdIHV9lChoBmgJaA9DCKRUwhP6/W5AlIaUUpRoFU0EAWgWR0CyfTIpQUHqdX2UKGgGaAloD0MIRZxOstUPcECUhpRSlGgVTR0BaBZHQLJ9Sa1kUbl1fZQoaAZoCWgPQwh0tRX7C+pyQJSGlFKUaBVNLQFoFkdAsn1L779AHHV9lChoBmgJaA9DCJsff2lRsXFAlIaUUpRoFU0JAWgWR0CyfU9pdrwfdX2UKGgGaAloD0MIBJDaxMmgcUCUhpRSlGgVS/toFkdAsn1RP69CeHV9lChoBmgJaA9DCFMj9DO1O3BAlIaUUpRoFU0BAWgWR0CyfWa19fCzdX2UKGgGaAloD0MI9wKzQpHKbUCUhpRSlGgVTSQBaBZHQLJ9s2mYSg51fZQoaAZoCWgPQwgIHXQJB2hzQJSGlFKUaBVL8WgWR0CyfbcK9f1IdX2UKGgGaAloD0MIxjNo6N9KcUCUhpRSlGgVTSkBaBZHQLJ92xd6cAl1fZQoaAZoCWgPQwhfXKrSFjFxQJSGlFKUaBVNDAFoFkdAsn4KoP07KnV9lChoBmgJaA9DCDT4+8UsenFAlIaUUpRoFU0NAWgWR0CyfkX/Pw/gdX2UKGgGaAloD0MIcGHdeDd/cUCUhpRSlGgVTYUBaBZHQLKDWDpC8e11fZQoaAZoCWgPQwiAf0qVKORSQJSGlFKUaBVL8WgWR0Cyg3O8f3evdX2UKGgGaAloD0MIOfHVjmLyckCUhpRSlGgVTQEBaBZHQLKDefUWl/J1fZQoaAZoCWgPQwjE7dCwGP1QQJSGlFKUaBVL0mgWR0Cyg6u5WilBdX2UKGgGaAloD0MIb38uGjKOSECUhpRSlGgVS/BoFkdAsoPF8JD3NHV9lChoBmgJaA9DCE9AE2FDKXFAlIaUUpRoFUv/aBZHQLKD6cz67/Z1fZQoaAZoCWgPQwggJuFC3slwQJSGlFKUaBVNAgFoFkdAsoPx00WM0nV9lChoBmgJaA9DCLwH6L7cqHFAlIaUUpRoFU0rAWgWR0Cyg/8+RoysdX2UKGgGaAloD0MIxa2CGOiyUUCUhpRSlGgVS8poFkdAsoP/S0BwM3V9lChoBmgJaA9DCOm5ha4EsnBAlIaUUpRoFU0oAWgWR0CyhAD28IzFdX2UKGgGaAloD0MIGhU42QbHckCUhpRSlGgVTRIBaBZHQLKECRTjvNN1fZQoaAZoCWgPQwhEigESzQ9uQJSGlFKUaBVNTAFoFkdAsoRLZGrjpHV9lChoBmgJaA9DCBwnhXlPB3JAlIaUUpRoFU0DAWgWR0CyhHcHObAldX2UKGgGaAloD0MI1LoNan+ickCUhpRSlGgVTS0BaBZHQLKEkjCYTkB1fZQoaAZoCWgPQwhVE0TdB3hKQJSGlFKUaBVL5GgWR0CyhKp4fOlgdX2UKGgGaAloD0MIzXLZ6JzvOECUhpRSlGgVS+ZoFkdAsoTgaCL/CXV9lChoBmgJaA9DCNkFg2sunHJAlIaUUpRoFU0pAWgWR0CyhOPvfCQ+dX2UKGgGaAloD0MIXrpJDILpcECUhpRSlGgVS+loFkdAsoUBVKf4AXV9lChoBmgJaA9DCEgVxausBFVAlIaUUpRoFUvAaBZHQLKFMvWpZOl1fZQoaAZoCWgPQwiE9X8O8z5uQJSGlFKUaBVNAAFoFkdAsoV47vG6w3V9lChoBmgJaA9DCO8fC9FhKXFAlIaUUpRoFU0rAWgWR0CyhXyP+4smdX2UKGgGaAloD0MIHcpQFROJc0CUhpRSlGgVTTQBaBZHQLKFy4rz5Gl1fZQoaAZoCWgPQwhHVRNEnXRwQJSGlFKUaBVNJQFoFkdAsoX3sgMc63V9lChoBmgJaA9DCC6thsS9HW5AlIaUUpRoFU0hAWgWR0Cyhf5M6BAfdX2UKGgGaAloD0MIJvvnaYBccECUhpRSlGgVS/xoFkdAsoYZhsqJ/HV9lChoBmgJaA9DCIJ0sWklM25AlIaUUpRoFU0xAWgWR0Cyhh7gwXZXdX2UKGgGaAloD0MIQpQvaCFjcUCUhpRSlGgVTTEBaBZHQLKGKCROk+J1fZQoaAZoCWgPQwh2/YLd8K9xQJSGlFKUaBVL9WgWR0Cyhj9n9NvgdX2UKGgGaAloD0MIbhgFwSMAckCUhpRSlGgVTWABaBZHQLKGWmYBvJl1fZQoaAZoCWgPQwhxHk5gOq1TQJSGlFKUaBVLwmgWR0CyhnhZ2ZAqdX2UKGgGaAloD0MIuoRDb7FpckCUhpRSlGgVTTABaBZHQLKGx6iTMaF1fZQoaAZoCWgPQwg7cw8J3xM5QJSGlFKUaBVL02gWR0CyhsutCAtndX2UKGgGaAloD0MI5xn7ks1OckCUhpRSlGgVTS0BaBZHQLKG3tY0VJt1fZQoaAZoCWgPQwjQ04BB0n9tQJSGlFKUaBVNFwFoFkdAsobx6iTMaHV9lChoBmgJaA9DCJFCWfh6G3FAlIaUUpRoFU01AWgWR0CyhygVO9FndX2UKGgGaAloD0MIxm8KK5VOckCUhpRSlGgVS/9oFkdAsodTisGPgnV9lChoBmgJaA9DCBR4J5/exnFAlIaUUpRoFU0PAWgWR0Cyh3NCZ4OddX2UKGgGaAloD0MIq3r5naZGcUCUhpRSlGgVS/toFkdAsoeVld1Md3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 428, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}