Initial commit
Browse files- .gitattributes +1 -0
- README.md +37 -0
- a2c-AntBulletEnv-v0.zip +3 -0
- a2c-AntBulletEnv-v0/_stable_baselines3_version +1 -0
- a2c-AntBulletEnv-v0/data +106 -0
- a2c-AntBulletEnv-v0/policy.optimizer.pth +3 -0
- a2c-AntBulletEnv-v0/policy.pth +3 -0
- a2c-AntBulletEnv-v0/pytorch_variables.pth +3 -0
- a2c-AntBulletEnv-v0/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +3 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
.gitattributes
CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
35 |
+
replay.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- AntBulletEnv-v0
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: AntBulletEnv-v0
|
16 |
+
type: AntBulletEnv-v0
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 1296.70 +/- 120.44
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **AntBulletEnv-v0**
|
25 |
+
This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-AntBulletEnv-v0.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:10fa3be574a5a95cb75c7c29e3bfde29ce8313d8e2dd84c94da4e3ec7c5d9177
|
3 |
+
size 129266
|
a2c-AntBulletEnv-v0/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
a2c-AntBulletEnv-v0/data
ADDED
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fa874418670>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fa874418700>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fa874418790>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fa874418820>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7fa8744188b0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7fa874418940>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7fa8744189d0>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fa874418a60>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7fa874418af0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fa874418b80>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fa874418c10>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fa874418ca0>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7fa87441b100>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {
|
24 |
+
":type:": "<class 'dict'>",
|
25 |
+
":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
|
26 |
+
"log_std_init": -2,
|
27 |
+
"ortho_init": false,
|
28 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
29 |
+
"optimizer_kwargs": {
|
30 |
+
"alpha": 0.99,
|
31 |
+
"eps": 1e-05,
|
32 |
+
"weight_decay": 0
|
33 |
+
}
|
34 |
+
},
|
35 |
+
"observation_space": {
|
36 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
37 |
+
":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
|
38 |
+
"dtype": "float32",
|
39 |
+
"_shape": [
|
40 |
+
28
|
41 |
+
],
|
42 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
|
43 |
+
"high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
|
44 |
+
"bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
45 |
+
"bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
46 |
+
"_np_random": null
|
47 |
+
},
|
48 |
+
"action_space": {
|
49 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
50 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
51 |
+
"dtype": "float32",
|
52 |
+
"_shape": [
|
53 |
+
8
|
54 |
+
],
|
55 |
+
"low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
|
56 |
+
"high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
|
57 |
+
"bounded_below": "[ True True True True True True True True]",
|
58 |
+
"bounded_above": "[ True True True True True True True True]",
|
59 |
+
"_np_random": null
|
60 |
+
},
|
61 |
+
"n_envs": 4,
|
62 |
+
"num_timesteps": 4000000,
|
63 |
+
"_total_timesteps": 4000000,
|
64 |
+
"_num_timesteps_at_start": 0,
|
65 |
+
"seed": null,
|
66 |
+
"action_noise": null,
|
67 |
+
"start_time": 1678801113601869579,
|
68 |
+
"learning_rate": 0.00096,
|
69 |
+
"tensorboard_log": null,
|
70 |
+
"lr_schedule": {
|
71 |
+
":type:": "<class 'function'>",
|
72 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
73 |
+
},
|
74 |
+
"_last_obs": {
|
75 |
+
":type:": "<class 'numpy.ndarray'>",
|
76 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAF0K/r7xlYA+VKQ9P+/L8b8X37k/VBmgv99WRzx4DmS+Yzykv4O/0T37n2K/hlXovgR+D8ArEIG7mnUWPxuidb9o1rc/D/xhvcCa8b2DwcC+u5FNP9k/Hz5RDCY/rUWkPcoms786KUbAUn4hP+IImT/Ueh8/L3SfvwESvL89/9A+dYSnv/KVuj9+mqC/XqRMv+TY8j4mH0g/0Om7PYV9/r6ES6o/uI1cvZGtFD/neOY8/XQBvwcFk786vHO/P3lwvRJ/hz/Wu/w+BrpBP8Sytr8Z6DY/RVylPlJ+IT8RH1a/B4p6P8MEh7/nyz+/Mg3IvFJwsr5HUt2/YeIEwFJBmT567IO+LiboPwHV4r4IFMA/zUe7PcporkAiRd0+klWfvAAWIz80XEq/OjHEvY0mtD866EM/1wqdPyFMPT/0neO/Geg2PzopRsD058q/ER9Wv/r0ND+ZeIK/JVwov+tAJD9LvuW/ve9qvxHDgb9sdKu+xbyuP72GODwCkSS/bIq1v7dppj8Kaw0+aAa3vHKDJL/4sbe/1WIYPR9oB74pjh+/6iiIPwljxz6lqNs9fymKPhnoNj9FXKU+Un4hPxEfVr+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
77 |
+
},
|
78 |
+
"_last_episode_starts": {
|
79 |
+
":type:": "<class 'numpy.ndarray'>",
|
80 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
81 |
+
},
|
82 |
+
"_last_original_obs": {
|
83 |
+
":type:": "<class 'numpy.ndarray'>",
|
84 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAB6b6M0AACAPwAAAAAAAAAAAAAAAAAAAAAAAACApf4dvQAAAAAfrPm/AAAAAC1Q8L0AAAAAgSr/PwAAAABdOM88AAAAAONf+D8AAAAA5viAvQAAAACHCdq/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAzSypNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgBcnwjwAAAAA70P/vwAAAADzRuQ9AAAAANWI9D8AAAAAZBWDPQAAAAC7iPg/AAAAADKnf70AAAAATzX0vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAUhFTYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIAsy4u9AAAAAIR8578AAAAAqCbNvQAAAAAt2fA/AAAAAGm7nz0AAAAAbDbhPwAAAADalkO9AAAAADlR778AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACPbiC0AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAx//OPQAAAAANo+W/AAAAABWGf7kAAAAApA72PwAAAAAXcQ4+AAAAAE6o4D8AAAAAOtUePQAAAAAdUdy/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
85 |
+
},
|
86 |
+
"_episode_num": 0,
|
87 |
+
"use_sde": true,
|
88 |
+
"sde_sample_freq": -1,
|
89 |
+
"_current_progress_remaining": 0.0,
|
90 |
+
"ep_info_buffer": {
|
91 |
+
":type:": "<class 'collections.deque'>",
|
92 |
+
":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJlyCL5ylvaMAWyUTegDjAF0lEdAt4kFfkWAPXV9lChoBkdAmZoSo86mwmgHTegDaAhHQLeMHc3EQ5F1fZQoaAZHQJgnIYj0L+hoB03oA2gIR0C3jDOdGy5adX2UKGgGR0CX9UnEl3QlaAdN6ANoCEdAt4yKGATZhHV9lChoBkdAmGaEQPI4l2gHTegDaAhHQLePFEV32VV1fZQoaAZHQJiBY1aW5YpoB03oA2gIR0C3kjLkbPyDdX2UKGgGR0CWwkDmKZUlaAdN6ANoCEdAt5JKEzwc53V9lChoBkdAmretsBQvYmgHTegDaAhHQLeSoE5yU9p1fZQoaAZHQJpoeuKXOW1oB03oA2gIR0C3lT8a0hNedX2UKGgGR0CXhhNUOuq4aAdN6ANoCEdAt5hdV7x/eHV9lChoBkdAlGkDmGM4tGgHTegDaAhHQLeYck4m1IB1fZQoaAZHQJRwxqVQhwFoB03oA2gIR0C3mMQRXfZVdX2UKGgGR0CUp/OHFglXaAdN6ANoCEdAt5tUQ5FPSHV9lChoBkdAls0PoJRfnmgHTegDaAhHQLeef8oQWep1fZQoaAZHQJZTjBguyu9oB03oA2gIR0C3npT6nBLxdX2UKGgGR0CXuttOmBOIaAdN6ANoCEdAt57m64Ds+nV9lChoBkdAlTDlOTJQtWgHTegDaAhHQLehkbsniNt1fZQoaAZHQJYaM5BC2MNoB03oA2gIR0C3pMOvMbFTdX2UKGgGR0CTZL3vQWvbaAdN6ANoCEdAt6TX5nDiwXV9lChoBkdAlEFcpG4I8mgHTegDaAhHQLelL7pmmLt1fZQoaAZHQJdu3o8p1A9oB03oA2gIR0C3p7SvC/GmdX2UKGgGR0CVKk3ueBhAaAdN6ANoCEdAt6rCy9mHxnV9lChoBkdAlioJZfUnX2gHTegDaAhHQLeq10lJHy51fZQoaAZHQJQtRWGRFJBoB03oA2gIR0C3qyvJNj9XdX2UKGgGR0CTnHBxPwd9aAdN6ANoCEdAt62zKoybhHV9lChoBkdAlD70N8VpK2gHTegDaAhHQLew+LVnVXp1fZQoaAZHQJURMC2c8T1oB03oA2gIR0C3sQ4gaFVUdX2UKGgGR0CRFIMZgogFaAdN6ANoCEdAt7FirgflqHV9lChoBkdAlHb5K3/gi2gHTegDaAhHQLez466reZZ1fZQoaAZHQJTi2mfoRqZoB03oA2gIR0C3tw/ysjmkdX2UKGgGR0CV7ZR3u/lAaAdN6ANoCEdAt7ckuctoSXV9lChoBkdAkji9kjHGTGgHTegDaAhHQLe3dQTVUdd1fZQoaAZHQJJZOlXRw61oB03oA2gIR0C3ufBYFJQMdX2UKGgGR0CWO33ta6jGaAdN6ANoCEdAt70QD4gzQHV9lChoBkdAl+nYcFQl8mgHTegDaAhHQLe9I9w3o9t1fZQoaAZHQJWDPv4M4LloB03oA2gIR0C3vXaXWvr4dX2UKGgGR0CUU8Q9ic5KaAdN6ANoCEdAt7/kju8brHV9lChoBkdAlNmzXnQpnmgHTegDaAhHQLfC6jQiRnx1fZQoaAZHQJbzG6BiCrdoB03oA2gIR0C3wv4o3JgcdX2UKGgGR0CVm19tuUD/aAdN6ANoCEdAt8NOOXE61nV9lChoBkdAmIyhd+ocaWgHTegDaAhHQLfFvVymygR1fZQoaAZHQJcMt3ljmS1oB03oA2gIR0C3yMdq+JxedX2UKGgGR0CTGVkp7TlUaAdN6ANoCEdAt8jbEFW4mXV9lChoBkdAl3KzIRywOmgHTegDaAhHQLfJLHObAk91fZQoaAZHQJdUJXU6PsBoB03oA2gIR0C3y7/OIInjdX2UKGgGR0CXubLTQVsUaAdN6ANoCEdAt87PdpItlXV9lChoBkdAk058sQNCq2gHTegDaAhHQLfO45H3Del1fZQoaAZHQJZBgBltj1BoB03oA2gIR0C3zzPpUxVRdX2UKGgGR0CUafxJul41aAdN6ANoCEdAt9GoV9F4LXV9lChoBkdAliVJ9uxbCGgHTegDaAhHQLfUwA9V3ll1fZQoaAZHQJkN1sfq5b1oB03oA2gIR0C31NTCUHIIdX2UKGgGR0CXiVNvwVj7aAdN6ANoCEdAt9UnpzLfUHV9lChoBkdAmCs7ZvkzXWgHTegDaAhHQLfXvX0Gu9x1fZQoaAZHQJd+vAh0QshoB03oA2gIR0C32tPwuuifdX2UKGgGR0CX3B1m8M/haAdN6ANoCEdAt9rohHLA6HV9lChoBkdAlyqTLB9Cu2gHTegDaAhHQLfbOy9EkSp1fZQoaAZHQJdAK28Zk09oB03oA2gIR0C33cJ3cHnmdX2UKGgGR0CVOJpeNT99aAdN6ANoCEdAt+DSHzpX63V9lChoBkdAlqnLdWQwK2gHTegDaAhHQLfg5nJT2nN1fZQoaAZHQJbHJ3W4EwFoB03oA2gIR0C34TfsAvL6dX2UKGgGR0CVvy0Rvm5laAdN6ANoCEdAt+O4hW5panV9lChoBkdAlQXDy8SPEWgHTegDaAhHQLfnA50r9VF1fZQoaAZHQJavdMM7U5NoB03oA2gIR0C35xjZxrBTdX2UKGgGR0CT71BZpztDaAdN6ANoCEdAt+d40ZWJanV9lChoBkdAlbT4RRMviGgHTegDaAhHQLfqFEal1r91fZQoaAZHQJRYbmJWNm1oB03oA2gIR0C37WFoDgZTdX2UKGgGR0CSb21ndweeaAdN6ANoCEdAt+11xOtW/HV9lChoBkdAlcGqtHQQc2gHTegDaAhHQLftx961LJ11fZQoaAZHQJZfDXkHUttoB03oA2gIR0C38F8IVuaXdX2UKGgGR0CW7JkyULUkaAdN6ANoCEdAt/PJ/DtPYXV9lChoBkdAlNmtALRa5mgHTegDaAhHQLfz33Ov+wV1fZQoaAZHQJOXaCmMwURoB03oA2gIR0C39DIjSofkdX2UKGgGR0CWx4AMDwH8aAdN6ANoCEdAt/a8snRb8nV9lChoBkdAltPKj3225WgHTegDaAhHQLf54SU1Q691fZQoaAZHQJbEBgCwKShoB03oA2gIR0C3+fTgVGkOdX2UKGgGR0CYC24b0e2eaAdN6ANoCEdAt/pI03wTd3V9lChoBkdAlqi+y3Td+GgHTegDaAhHQLf81ItDlYF1fZQoaAZHQJdCNTqB3A5oB03oA2gIR0C4ANAaWHDadX2UKGgGR0CW6PCVrylOaAdN6ANoCEdAuADtMsYl6nV9lChoBkdAlsjVvddmhGgHTegDaAhHQLgBYt7rs0J1fZQoaAZHQJcK+tU4rBloB03oA2gIR0C4BCkedTYNdX2UKGgGR0CV9XbsF+uvaAdN6ANoCEdAuAdVUo8ZDXV9lChoBkdAlYnlhPTG52gHTegDaAhHQLgHanzxwyZ1fZQoaAZHQJPlQhdMTOBoB03oA2gIR0C4B78feUILdX2UKGgGR0CVdagh8pkPaAdN6ANoCEdAuApHjCHh0nV9lChoBkdAlYPBq9GqgmgHTegDaAhHQLgNcmsvIwN1fZQoaAZHQJRMeAEt/WloB03oA2gIR0C4DYe7QLNOdX2UKGgGR0CQYGPNmlImaAdN6ANoCEdAuA3i1Bt1p3V9lChoBkdAlI1n2EkB0mgHTegDaAhHQLgQny2hIvt1fZQoaAZHQJQaoUh3aBZoB03oA2gIR0C4E9a/VRUFdX2UKGgGR0CVa8eO4oZyaAdN6ANoCEdAuBPrjDKoynV9lChoBkdAkkKssQNCq2gHTegDaAhHQLgUQlBhQWN1fZQoaAZHQJWeqURnOB1oB03oA2gIR0C4FtRaX8fndX2UKGgGR0CUQfH5aePJaAdN6ANoCEdAuBn/J3gUDnV9lChoBkdAlAKFTFVDKGgHTegDaAhHQLgaE2xY7q91fZQoaAZHQJK3o7uDzy1oB03oA2gIR0C4GmqOLiuMdX2UKGgGR0CUNBJnxri3aAdN6ANoCEdAuB0teLNwBHV9lChoBkdAkuQtI9TxXmgHTegDaAhHQLggb6eoUBZ1fZQoaAZHQJNVvdKujh1oB03oA2gIR0C4IISzC1qndX2UKGgGR0CUigYZ2pyZaAdN6ANoCEdAuCDXZK3/gnVlLg=="
|
93 |
+
},
|
94 |
+
"ep_success_buffer": {
|
95 |
+
":type:": "<class 'collections.deque'>",
|
96 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
97 |
+
},
|
98 |
+
"_n_updates": 125000,
|
99 |
+
"n_steps": 8,
|
100 |
+
"gamma": 0.99,
|
101 |
+
"gae_lambda": 0.9,
|
102 |
+
"ent_coef": 0.0,
|
103 |
+
"vf_coef": 0.4,
|
104 |
+
"max_grad_norm": 0.5,
|
105 |
+
"normalize_advantage": false
|
106 |
+
}
|
a2c-AntBulletEnv-v0/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a7557aca44a0b278ea3c7591eda9dc7967ed9f519e00950633f3dba4ad826850
|
3 |
+
size 56190
|
a2c-AntBulletEnv-v0/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:97eb4a7478a0dd5bdfda04aee62b1655df50af5004e646dfaa69f243c1bd13a7
|
3 |
+
size 56958
|
a2c-AntBulletEnv-v0/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-AntBulletEnv-v0/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.9.16
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1+cu116
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fa874418670>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fa874418700>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fa874418790>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fa874418820>", "_build": "<function ActorCriticPolicy._build at 0x7fa8744188b0>", "forward": "<function ActorCriticPolicy.forward at 0x7fa874418940>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fa8744189d0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fa874418a60>", "_predict": "<function ActorCriticPolicy._predict at 0x7fa874418af0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fa874418b80>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fa874418c10>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fa874418ca0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fa87441b100>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 4000000, "_total_timesteps": 4000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1678801113601869579, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAF0K/r7xlYA+VKQ9P+/L8b8X37k/VBmgv99WRzx4DmS+Yzykv4O/0T37n2K/hlXovgR+D8ArEIG7mnUWPxuidb9o1rc/D/xhvcCa8b2DwcC+u5FNP9k/Hz5RDCY/rUWkPcoms786KUbAUn4hP+IImT/Ueh8/L3SfvwESvL89/9A+dYSnv/KVuj9+mqC/XqRMv+TY8j4mH0g/0Om7PYV9/r6ES6o/uI1cvZGtFD/neOY8/XQBvwcFk786vHO/P3lwvRJ/hz/Wu/w+BrpBP8Sytr8Z6DY/RVylPlJ+IT8RH1a/B4p6P8MEh7/nyz+/Mg3IvFJwsr5HUt2/YeIEwFJBmT567IO+LiboPwHV4r4IFMA/zUe7PcporkAiRd0+klWfvAAWIz80XEq/OjHEvY0mtD866EM/1wqdPyFMPT/0neO/Geg2PzopRsD058q/ER9Wv/r0ND+ZeIK/JVwov+tAJD9LvuW/ve9qvxHDgb9sdKu+xbyuP72GODwCkSS/bIq1v7dppj8Kaw0+aAa3vHKDJL/4sbe/1WIYPR9oB74pjh+/6iiIPwljxz6lqNs9fymKPhnoNj9FXKU+Un4hPxEfVr+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAB6b6M0AACAPwAAAAAAAAAAAAAAAAAAAAAAAACApf4dvQAAAAAfrPm/AAAAAC1Q8L0AAAAAgSr/PwAAAABdOM88AAAAAONf+D8AAAAA5viAvQAAAACHCdq/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAzSypNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgBcnwjwAAAAA70P/vwAAAADzRuQ9AAAAANWI9D8AAAAAZBWDPQAAAAC7iPg/AAAAADKnf70AAAAATzX0vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAUhFTYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIAsy4u9AAAAAIR8578AAAAAqCbNvQAAAAAt2fA/AAAAAGm7nz0AAAAAbDbhPwAAAADalkO9AAAAADlR778AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACPbiC0AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAx//OPQAAAAANo+W/AAAAABWGf7kAAAAApA72PwAAAAAXcQ4+AAAAAE6o4D8AAAAAOtUePQAAAAAdUdy/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJlyCL5ylvaMAWyUTegDjAF0lEdAt4kFfkWAPXV9lChoBkdAmZoSo86mwmgHTegDaAhHQLeMHc3EQ5F1fZQoaAZHQJgnIYj0L+hoB03oA2gIR0C3jDOdGy5adX2UKGgGR0CX9UnEl3QlaAdN6ANoCEdAt4yKGATZhHV9lChoBkdAmGaEQPI4l2gHTegDaAhHQLePFEV32VV1fZQoaAZHQJiBY1aW5YpoB03oA2gIR0C3kjLkbPyDdX2UKGgGR0CWwkDmKZUlaAdN6ANoCEdAt5JKEzwc53V9lChoBkdAmretsBQvYmgHTegDaAhHQLeSoE5yU9p1fZQoaAZHQJpoeuKXOW1oB03oA2gIR0C3lT8a0hNedX2UKGgGR0CXhhNUOuq4aAdN6ANoCEdAt5hdV7x/eHV9lChoBkdAlGkDmGM4tGgHTegDaAhHQLeYck4m1IB1fZQoaAZHQJRwxqVQhwFoB03oA2gIR0C3mMQRXfZVdX2UKGgGR0CUp/OHFglXaAdN6ANoCEdAt5tUQ5FPSHV9lChoBkdAls0PoJRfnmgHTegDaAhHQLeef8oQWep1fZQoaAZHQJZTjBguyu9oB03oA2gIR0C3npT6nBLxdX2UKGgGR0CXuttOmBOIaAdN6ANoCEdAt57m64Ds+nV9lChoBkdAlTDlOTJQtWgHTegDaAhHQLehkbsniNt1fZQoaAZHQJYaM5BC2MNoB03oA2gIR0C3pMOvMbFTdX2UKGgGR0CTZL3vQWvbaAdN6ANoCEdAt6TX5nDiwXV9lChoBkdAlEFcpG4I8mgHTegDaAhHQLelL7pmmLt1fZQoaAZHQJdu3o8p1A9oB03oA2gIR0C3p7SvC/GmdX2UKGgGR0CVKk3ueBhAaAdN6ANoCEdAt6rCy9mHxnV9lChoBkdAlioJZfUnX2gHTegDaAhHQLeq10lJHy51fZQoaAZHQJQtRWGRFJBoB03oA2gIR0C3qyvJNj9XdX2UKGgGR0CTnHBxPwd9aAdN6ANoCEdAt62zKoybhHV9lChoBkdAlD70N8VpK2gHTegDaAhHQLew+LVnVXp1fZQoaAZHQJURMC2c8T1oB03oA2gIR0C3sQ4gaFVUdX2UKGgGR0CRFIMZgogFaAdN6ANoCEdAt7FirgflqHV9lChoBkdAlHb5K3/gi2gHTegDaAhHQLez466reZZ1fZQoaAZHQJTi2mfoRqZoB03oA2gIR0C3tw/ysjmkdX2UKGgGR0CV7ZR3u/lAaAdN6ANoCEdAt7ckuctoSXV9lChoBkdAkji9kjHGTGgHTegDaAhHQLe3dQTVUdd1fZQoaAZHQJJZOlXRw61oB03oA2gIR0C3ufBYFJQMdX2UKGgGR0CWO33ta6jGaAdN6ANoCEdAt70QD4gzQHV9lChoBkdAl+nYcFQl8mgHTegDaAhHQLe9I9w3o9t1fZQoaAZHQJWDPv4M4LloB03oA2gIR0C3vXaXWvr4dX2UKGgGR0CUU8Q9ic5KaAdN6ANoCEdAt7/kju8brHV9lChoBkdAlNmzXnQpnmgHTegDaAhHQLfC6jQiRnx1fZQoaAZHQJbzG6BiCrdoB03oA2gIR0C3wv4o3JgcdX2UKGgGR0CVm19tuUD/aAdN6ANoCEdAt8NOOXE61nV9lChoBkdAmIyhd+ocaWgHTegDaAhHQLfFvVymygR1fZQoaAZHQJcMt3ljmS1oB03oA2gIR0C3yMdq+JxedX2UKGgGR0CTGVkp7TlUaAdN6ANoCEdAt8jbEFW4mXV9lChoBkdAl3KzIRywOmgHTegDaAhHQLfJLHObAk91fZQoaAZHQJdUJXU6PsBoB03oA2gIR0C3y7/OIInjdX2UKGgGR0CXubLTQVsUaAdN6ANoCEdAt87PdpItlXV9lChoBkdAk058sQNCq2gHTegDaAhHQLfO45H3Del1fZQoaAZHQJZBgBltj1BoB03oA2gIR0C3zzPpUxVRdX2UKGgGR0CUafxJul41aAdN6ANoCEdAt9GoV9F4LXV9lChoBkdAliVJ9uxbCGgHTegDaAhHQLfUwA9V3ll1fZQoaAZHQJkN1sfq5b1oB03oA2gIR0C31NTCUHIIdX2UKGgGR0CXiVNvwVj7aAdN6ANoCEdAt9UnpzLfUHV9lChoBkdAmCs7ZvkzXWgHTegDaAhHQLfXvX0Gu9x1fZQoaAZHQJd+vAh0QshoB03oA2gIR0C32tPwuuifdX2UKGgGR0CX3B1m8M/haAdN6ANoCEdAt9rohHLA6HV9lChoBkdAlyqTLB9Cu2gHTegDaAhHQLfbOy9EkSp1fZQoaAZHQJdAK28Zk09oB03oA2gIR0C33cJ3cHnmdX2UKGgGR0CVOJpeNT99aAdN6ANoCEdAt+DSHzpX63V9lChoBkdAlqnLdWQwK2gHTegDaAhHQLfg5nJT2nN1fZQoaAZHQJbHJ3W4EwFoB03oA2gIR0C34TfsAvL6dX2UKGgGR0CVvy0Rvm5laAdN6ANoCEdAt+O4hW5panV9lChoBkdAlQXDy8SPEWgHTegDaAhHQLfnA50r9VF1fZQoaAZHQJavdMM7U5NoB03oA2gIR0C35xjZxrBTdX2UKGgGR0CT71BZpztDaAdN6ANoCEdAt+d40ZWJanV9lChoBkdAlbT4RRMviGgHTegDaAhHQLfqFEal1r91fZQoaAZHQJRYbmJWNm1oB03oA2gIR0C37WFoDgZTdX2UKGgGR0CSb21ndweeaAdN6ANoCEdAt+11xOtW/HV9lChoBkdAlcGqtHQQc2gHTegDaAhHQLftx961LJ11fZQoaAZHQJZfDXkHUttoB03oA2gIR0C38F8IVuaXdX2UKGgGR0CW7JkyULUkaAdN6ANoCEdAt/PJ/DtPYXV9lChoBkdAlNmtALRa5mgHTegDaAhHQLfz33Ov+wV1fZQoaAZHQJOXaCmMwURoB03oA2gIR0C39DIjSofkdX2UKGgGR0CWx4AMDwH8aAdN6ANoCEdAt/a8snRb8nV9lChoBkdAltPKj3225WgHTegDaAhHQLf54SU1Q691fZQoaAZHQJbEBgCwKShoB03oA2gIR0C3+fTgVGkOdX2UKGgGR0CYC24b0e2eaAdN6ANoCEdAt/pI03wTd3V9lChoBkdAlqi+y3Td+GgHTegDaAhHQLf81ItDlYF1fZQoaAZHQJdCNTqB3A5oB03oA2gIR0C4ANAaWHDadX2UKGgGR0CW6PCVrylOaAdN6ANoCEdAuADtMsYl6nV9lChoBkdAlsjVvddmhGgHTegDaAhHQLgBYt7rs0J1fZQoaAZHQJcK+tU4rBloB03oA2gIR0C4BCkedTYNdX2UKGgGR0CV9XbsF+uvaAdN6ANoCEdAuAdVUo8ZDXV9lChoBkdAlYnlhPTG52gHTegDaAhHQLgHanzxwyZ1fZQoaAZHQJPlQhdMTOBoB03oA2gIR0C4B78feUILdX2UKGgGR0CVdagh8pkPaAdN6ANoCEdAuApHjCHh0nV9lChoBkdAlYPBq9GqgmgHTegDaAhHQLgNcmsvIwN1fZQoaAZHQJRMeAEt/WloB03oA2gIR0C4DYe7QLNOdX2UKGgGR0CQYGPNmlImaAdN6ANoCEdAuA3i1Bt1p3V9lChoBkdAlI1n2EkB0mgHTegDaAhHQLgQny2hIvt1fZQoaAZHQJQaoUh3aBZoB03oA2gIR0C4E9a/VRUFdX2UKGgGR0CVa8eO4oZyaAdN6ANoCEdAuBPrjDKoynV9lChoBkdAkkKssQNCq2gHTegDaAhHQLgUQlBhQWN1fZQoaAZHQJWeqURnOB1oB03oA2gIR0C4FtRaX8fndX2UKGgGR0CUQfH5aePJaAdN6ANoCEdAuBn/J3gUDnV9lChoBkdAlAKFTFVDKGgHTegDaAhHQLgaE2xY7q91fZQoaAZHQJK3o7uDzy1oB03oA2gIR0C4GmqOLiuMdX2UKGgGR0CUNBJnxri3aAdN6ANoCEdAuB0teLNwBHV9lChoBkdAkuQtI9TxXmgHTegDaAhHQLggb6eoUBZ1fZQoaAZHQJNVvdKujh1oB03oA2gIR0C4IISzC1qndX2UKGgGR0CUigYZ2pyZaAdN6ANoCEdAuCDXZK3/gnVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 125000, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:52868fb1cd54b245824743625b5619b6886c6192444a498d627df88176d8cd89
|
3 |
+
size 1123269
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 1296.7029557776782, "std_reward": 120.43858757497992, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-14T15:24:10.916906"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:073b24bca30e1806651fc34c5a82fffc8ce969b06796738a2bd0994455755c30
|
3 |
+
size 2136
|