Initial commit
Browse files- README.md +1 -1
- a2c-PandaReachDense-v2.zip +2 -2
- a2c-PandaReachDense-v2/data +18 -16
- a2c-PandaReachDense-v2/policy.optimizer.pth +2 -2
- a2c-PandaReachDense-v2/policy.pth +2 -2
- config.json +1 -1
- replay.mp4 +0 -0
- results.json +1 -1
- vec_normalize.pkl +1 -1
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: PandaReachDense-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value: -
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: PandaReachDense-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: -0.94 +/- 0.29
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
a2c-PandaReachDense-v2.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:38b9362847d5cd6417faad8bd64401b989e3728642fcd2ae89d362ca16d67eb6
|
3 |
+
size 109537
|
a2c-PandaReachDense-v2/data
CHANGED
@@ -11,7 +11,9 @@
|
|
11 |
"verbose": 1,
|
12 |
"policy_kwargs": {
|
13 |
":type:": "<class 'dict'>",
|
14 |
-
":serialized:": "
|
|
|
|
|
15 |
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
16 |
"optimizer_kwargs": {
|
17 |
"alpha": 0.99,
|
@@ -46,19 +48,19 @@
|
|
46 |
"_num_timesteps_at_start": 0,
|
47 |
"seed": null,
|
48 |
"action_noise": null,
|
49 |
-
"start_time":
|
50 |
-
"learning_rate": 0.
|
51 |
"tensorboard_log": null,
|
52 |
"lr_schedule": {
|
53 |
":type:": "<class 'function'>",
|
54 |
-
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/
|
55 |
},
|
56 |
"_last_obs": {
|
57 |
":type:": "<class 'collections.OrderedDict'>",
|
58 |
-
":serialized:": "
|
59 |
-
"achieved_goal": "[[0.
|
60 |
-
"desired_goal": "[[-1.
|
61 |
-
"observation": "[[ 0.
|
62 |
},
|
63 |
"_last_episode_starts": {
|
64 |
":type:": "<class 'numpy.ndarray'>",
|
@@ -66,29 +68,29 @@
|
|
66 |
},
|
67 |
"_last_original_obs": {
|
68 |
":type:": "<class 'collections.OrderedDict'>",
|
69 |
-
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////
|
70 |
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
71 |
-
"desired_goal": "[[
|
72 |
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
73 |
},
|
74 |
"_episode_num": 0,
|
75 |
-
"use_sde":
|
76 |
"sde_sample_freq": -1,
|
77 |
"_current_progress_remaining": 0.0,
|
78 |
"ep_info_buffer": {
|
79 |
":type:": "<class 'collections.deque'>",
|
80 |
-
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////
|
81 |
},
|
82 |
"ep_success_buffer": {
|
83 |
":type:": "<class 'collections.deque'>",
|
84 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
85 |
},
|
86 |
-
"_n_updates":
|
87 |
-
"n_steps":
|
88 |
"gamma": 0.99,
|
89 |
-
"gae_lambda":
|
90 |
"ent_coef": 0.0,
|
91 |
-
"vf_coef": 0.
|
92 |
"max_grad_norm": 0.5,
|
93 |
"normalize_advantage": false
|
94 |
}
|
|
|
11 |
"verbose": 1,
|
12 |
"policy_kwargs": {
|
13 |
":type:": "<class 'dict'>",
|
14 |
+
":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
|
15 |
+
"log_std_init": -2,
|
16 |
+
"ortho_init": false,
|
17 |
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
18 |
"optimizer_kwargs": {
|
19 |
"alpha": 0.99,
|
|
|
48 |
"_num_timesteps_at_start": 0,
|
49 |
"seed": null,
|
50 |
"action_noise": null,
|
51 |
+
"start_time": 1678885671915772445,
|
52 |
+
"learning_rate": 0.00096,
|
53 |
"tensorboard_log": null,
|
54 |
"lr_schedule": {
|
55 |
":type:": "<class 'function'>",
|
56 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
57 |
},
|
58 |
"_last_obs": {
|
59 |
":type:": "<class 'collections.OrderedDict'>",
|
60 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAnRDyPpHhpLvcPw4/nRDyPpHhpLvcPw4/nRDyPpHhpLvcPw4/nRDyPpHhpLvcPw4/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAALQ+Ov0fV0T+mGZi/aJwRP/v0CD+q9f0+816FP+opUr+yMFw/cV2FPzdp2b+zo+6+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACdEPI+keGku9w/Dj8psFY97ljZul5+Vz2dEPI+keGku9w/Dj8psFY97ljZul5+Vz2dEPI+keGku9w/Dj8psFY97ljZul5+Vz2dEPI+keGku9w/Dj8psFY97ljZul5+Vz2UaA5LBEsGhpRoEnSUUpR1Lg==",
|
61 |
+
"achieved_goal": "[[ 0.472783 -0.00503177 0.5556619 ]\n [ 0.472783 -0.00503177 0.5556619 ]\n [ 0.472783 -0.00503177 0.5556619 ]\n [ 0.472783 -0.00503177 0.5556619 ]]",
|
62 |
+
"desired_goal": "[[-1.1098381 1.6393212 -1.1882827 ]\n [ 0.5687928 0.5349881 0.4960149 ]\n [ 1.0419601 -0.82095206 0.86011803]\n [ 1.0419141 -1.6985234 -0.46609268]]",
|
63 |
+
"observation": "[[ 0.472783 -0.00503177 0.5556619 0.05241409 -0.00165823 0.05261075]\n [ 0.472783 -0.00503177 0.5556619 0.05241409 -0.00165823 0.05261075]\n [ 0.472783 -0.00503177 0.5556619 0.05241409 -0.00165823 0.05261075]\n [ 0.472783 -0.00503177 0.5556619 0.05241409 -0.00165823 0.05261075]]"
|
64 |
},
|
65 |
"_last_episode_starts": {
|
66 |
":type:": "<class 'numpy.ndarray'>",
|
|
|
68 |
},
|
69 |
"_last_original_obs": {
|
70 |
":type:": "<class 'collections.OrderedDict'>",
|
71 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAZLxmPcXOgTwMIgo+ORoZPZY9k71pihg+2OLFvfwuZb3fQ0w+GoVuvH9WrL3v7Mk8lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
|
72 |
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
73 |
+
"desired_goal": "[[ 0.05633201 0.01584567 0.1348955 ]\n [ 0.03737852 -0.07189481 0.1489655 ]\n [-0.09662408 -0.05595301 0.19947766]\n [-0.0145581 -0.08414935 0.02464911]]",
|
74 |
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
75 |
},
|
76 |
"_episode_num": 0,
|
77 |
+
"use_sde": true,
|
78 |
"sde_sample_freq": -1,
|
79 |
"_current_progress_remaining": 0.0,
|
80 |
"ep_info_buffer": {
|
81 |
":type:": "<class 'collections.deque'>",
|
82 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI74/3qpWJ4L+UhpRSlIwBbJRLMowBdJRHQKRatMRpUPx1fZQoaAZoCWgPQwjScwtdiUDfv5SGlFKUaBVLMmgWR0CkWngrYoRadX2UKGgGaAloD0MITrNAu0OK4r+UhpRSlGgVSzJoFkdApFo7lLeyiXV9lChoBmgJaA9DCKwfm+RHfOC/lIaUUpRoFUsyaBZHQKRZ/bTMJQd1fZQoaAZoCWgPQwhFSx5Pyw/jv5SGlFKUaBVLMmgWR0CkW+ofKZDzdX2UKGgGaAloD0MI5DJuaqB54b+UhpRSlGgVSzJoFkdApFuthZyMk3V9lChoBmgJaA9DCHXo9LwbC8q/lIaUUpRoFUsyaBZHQKRbcPGyX2N1fZQoaAZoCWgPQwjul09WDFfgv5SGlFKUaBVLMmgWR0CkWzMkIHC5dX2UKGgGaAloD0MI91YkJqjhwb+UhpRSlGgVSzJoFkdApFzsqJ/G2nV9lChoBmgJaA9DCK7wLhfxndu/lIaUUpRoFUsyaBZHQKRcsDtgKF91fZQoaAZoCWgPQwgSa/EpAMbev5SGlFKUaBVLMmgWR0CkXHOGbkOqdX2UKGgGaAloD0MIkKLO3EPC4L+UhpRSlGgVSzJoFkdApFw1enhsInV9lChoBmgJaA9DCCS5/If0W+u/lIaUUpRoFUsyaBZHQKRd+qG1x851fZQoaAZoCWgPQwghdNAlHHrhv5SGlFKUaBVLMmgWR0CkXb4AsCkodX2UKGgGaAloD0MIiXssfeiC27+UhpRSlGgVSzJoFkdApF2BSDRMOHV9lChoBmgJaA9DCD1fs1w2uue/lIaUUpRoFUsyaBZHQKRdQwnH/951fZQoaAZoCWgPQwgR4V8EjZnYv5SGlFKUaBVLMmgWR0CkXwmITGo8dX2UKGgGaAloD0MIhZhLqrYb6L+UhpRSlGgVSzJoFkdApF7NAu7HyXV9lChoBmgJaA9DCBbAlIEDWuK/lIaUUpRoFUsyaBZHQKRekGWUr091fZQoaAZoCWgPQwjrjzAMWHLrv5SGlFKUaBVLMmgWR0CkXlKSX+l1dX2UKGgGaAloD0MIvAZ96e3P5L+UhpRSlGgVSzJoFkdApGAhEDyOJnV9lChoBmgJaA9DCPj6WpcaIfS/lIaUUpRoFUsyaBZHQKRf5L2YfGN1fZQoaAZoCWgPQwh8R40JMZfSv5SGlFKUaBVLMmgWR0CkX6gc94eLdX2UKGgGaAloD0MIOfHVjuIc2L+UhpRSlGgVSzJoFkdApF9qP4mCy3V9lChoBmgJaA9DCMR8eQH20dW/lIaUUpRoFUsyaBZHQKRhIJlar3l1fZQoaAZoCWgPQwhX7ZqQ1hjWv5SGlFKUaBVLMmgWR0CkYOQUYbbUdX2UKGgGaAloD0MIfuNrzywJ3r+UhpRSlGgVSzJoFkdApGCnechC+nV9lChoBmgJaA9DCNKsbB/yls+/lIaUUpRoFUsyaBZHQKRgaZa3Zwp1fZQoaAZoCWgPQwjYSBKEK6Dbv5SGlFKUaBVLMmgWR0CkYjMq8UVSdX2UKGgGaAloD0MIRzgteNFX6r+UhpRSlGgVSzJoFkdApGH2sFMZg3V9lChoBmgJaA9DCMMRpFLs6Om/lIaUUpRoFUsyaBZHQKRhugezUqh1fZQoaAZoCWgPQwjhJM0f09rZv5SGlFKUaBVLMmgWR0CkYXv3ztkXdX2UKGgGaAloD0MId4cUAyQa4r+UhpRSlGgVSzJoFkdApGMwXbdrPHV9lChoBmgJaA9DCMtlo3N+CuG/lIaUUpRoFUsyaBZHQKRi8/cnE2p1fZQoaAZoCWgPQwj+8PPfg1fvv5SGlFKUaBVLMmgWR0CkYrcxKxs3dX2UKGgGaAloD0MIPiE7b2Oz17+UhpRSlGgVSzJoFkdApGJ5HEuQIXV9lChoBmgJaA9DCApLPKBsyty/lIaUUpRoFUsyaBZHQKRkR54W1tx1fZQoaAZoCWgPQwindLD+z2Huv5SGlFKUaBVLMmgWR0CkZAsglnh9dX2UKGgGaAloD0MIxa7t7Zbk4r+UhpRSlGgVSzJoFkdApGPOnMt9QXV9lChoBmgJaA9DCLAgzVg0nce/lIaUUpRoFUsyaBZHQKRjkLJjlPt1fZQoaAZoCWgPQwgFptO6Derrv5SGlFKUaBVLMmgWR0CkZVajnFHbdX2UKGgGaAloD0MICW8PQkC+4b+UhpRSlGgVSzJoFkdApGUaNIbwSnV9lChoBmgJaA9DCG/0MR8Q6Nm/lIaUUpRoFUsyaBZHQKRk3YxtYSx1fZQoaAZoCWgPQwhHHogs0kTmv5SGlFKUaBVLMmgWR0CkZJ+1rqMWdX2UKGgGaAloD0MIqfi/IypU6L+UhpRSlGgVSzJoFkdApGZ//o7muHV9lChoBmgJaA9DCNF2TN2VXdi/lIaUUpRoFUsyaBZHQKRmQ4SYgJV1fZQoaAZoCWgPQwjDRe7p6g7zv5SGlFKUaBVLMmgWR0CkZgfoRqXXdX2UKGgGaAloD0MIoDcVqTC28L+UhpRSlGgVSzJoFkdApGXJwwTM7nV9lChoBmgJaA9DCHkDzHwHP9i/lIaUUpRoFUsyaBZHQKRnk4TbnHN1fZQoaAZoCWgPQwidEDroEg7kv5SGlFKUaBVLMmgWR0CkZ1cqWkaddX2UKGgGaAloD0MIDOnwEMZP37+UhpRSlGgVSzJoFkdApGcaZ+hGpnV9lChoBmgJaA9DCIicvp6vWd+/lIaUUpRoFUsyaBZHQKRm3IIWxhV1fZQoaAZoCWgPQwjn3y77dafgv5SGlFKUaBVLMmgWR0CkaMH+IdlvdX2UKGgGaAloD0MILESHwJFA77+UhpRSlGgVSzJoFkdApGiFj0+TvHV9lChoBmgJaA9DCJqWWBmNfNy/lIaUUpRoFUsyaBZHQKRoSQRwqAl1fZQoaAZoCWgPQwjCGJEotKzav5SGlFKUaBVLMmgWR0CkaAs9SuQqdX2UKGgGaAloD0MIq+rld5rM4L+UhpRSlGgVSzJoFkdApGnoz544ZXV9lChoBmgJaA9DCBCSBUzg1tm/lIaUUpRoFUsyaBZHQKRprGWD6Fd1fZQoaAZoCWgPQwisU+V7RiLOv5SGlFKUaBVLMmgWR0CkaW/G+9J0dX2UKGgGaAloD0MIeCefHtuy6r+UhpRSlGgVSzJoFkdApGkyHmA9V3V9lChoBmgJaA9DCEmhLHx9LeS/lIaUUpRoFUsyaBZHQKRrLm/336B1fZQoaAZoCWgPQwh3g2itaHPGv5SGlFKUaBVLMmgWR0CkavIEr5IpdX2UKGgGaAloD0MIELOXbaet4L+UhpRSlGgVSzJoFkdApGq1enhsInV9lChoBmgJaA9DCPEr1nCRe+y/lIaUUpRoFUsyaBZHQKRqeLS/j811fZQoaAZoCWgPQwiU+NwJ9t/hv5SGlFKUaBVLMmgWR0CkbFhdMTN/dX2UKGgGaAloD0MIRbqfU5Cf17+UhpRSlGgVSzJoFkdApGwb4Ju2qnV9lChoBmgJaA9DCJvo81FGXOW/lIaUUpRoFUsyaBZHQKRr31fVqet1fZQoaAZoCWgPQwh/EwoRcIjqv5SGlFKUaBVLMmgWR0Cka6FmWdEtdX2UKGgGaAloD0MIYk7QJodP3b+UhpRSlGgVSzJoFkdApG2InOSntXV9lChoBmgJaA9DCM+hDFUxFe2/lIaUUpRoFUsyaBZHQKRtTCpm29d1fZQoaAZoCWgPQwhGfZI7bCLdv5SGlFKUaBVLMmgWR0CkbQ+hoM8YdX2UKGgGaAloD0MIVgvsMZFS7r+UhpRSlGgVSzJoFkdApGzR2IO6NHV9lChoBmgJaA9DCL0BZr6DX/C/lIaUUpRoFUsyaBZHQKRuzskY4yZ1fZQoaAZoCWgPQwinejL/6Bviv5SGlFKUaBVLMmgWR0CkbpKF7D2rdX2UKGgGaAloD0MIev1JfO6E7b+UhpRSlGgVSzJoFkdApG5WLJjlP3V9lChoBmgJaA9DCFKZYg6Cjum/lIaUUpRoFUsyaBZHQKRuGFSsKb91fZQoaAZoCWgPQwg0Tdh+Msbzv5SGlFKUaBVLMmgWR0Ckb+/pdKNAdX2UKGgGaAloD0MIARdky/J11b+UhpRSlGgVSzJoFkdApG+zqyGBWnV9lChoBmgJaA9DCPWCT3PyIum/lIaUUpRoFUsyaBZHQKRvd5P/JeV1fZQoaAZoCWgPQwhT7Ggc6vfuv5SGlFKUaBVLMmgWR0CkbzpsO5J9dX2UKGgGaAloD0MIL/fJUYAo1r+UhpRSlGgVSzJoFkdApHD7kdV/+nV9lChoBmgJaA9DCEPFOH8TiuC/lIaUUpRoFUsyaBZHQKRwvvAGjbl1fZQoaAZoCWgPQwiiCKnb2Vfev5SGlFKUaBVLMmgWR0CkcII2wV0tdX2UKGgGaAloD0MI9RPObi2T7b+UhpRSlGgVSzJoFkdApHBEP+XJHXV9lChoBmgJaA9DCGTrGcIxS+2/lIaUUpRoFUsyaBZHQKRyOi+tbLV1fZQoaAZoCWgPQwjGbp9VZkrrv5SGlFKUaBVLMmgWR0Ckcf3PRiPRdX2UKGgGaAloD0MIthDkoIQZ5L+UhpRSlGgVSzJoFkdApHHBSJj2BnV9lChoBmgJaA9DCCDT2jS2V+O/lIaUUpRoFUsyaBZHQKRxg24uscR1fZQoaAZoCWgPQwinBS/6CtLkv5SGlFKUaBVLMmgWR0Ckc0hSDRMOdX2UKGgGaAloD0MIYD3uW62T+L+UhpRSlGgVSzJoFkdApHMLz/ZM+XV9lChoBmgJaA9DCGed8X1xafC/lIaUUpRoFUsyaBZHQKRyzyLhrFh1fZQoaAZoCWgPQwg4EJIFTODxv5SGlFKUaBVLMmgWR0CkcpE7W/ahdX2UKGgGaAloD0MIec4WEFoP3r+UhpRSlGgVSzJoFkdApHRTHIZIhHV9lChoBmgJaA9DCEmBBTBl4OS/lIaUUpRoFUsyaBZHQKR0FsF+uvF1fZQoaAZoCWgPQwhJEoQroFDjv5SGlFKUaBVLMmgWR0Ckc9o4dZJTdX2UKGgGaAloD0MInrRwWYWN9L+UhpRSlGgVSzJoFkdApHOcbvPTonV9lChoBmgJaA9DCDKrd7gdGuG/lIaUUpRoFUsyaBZHQKR1ZNVzZHx1fZQoaAZoCWgPQwh9Ik+Srpnyv5SGlFKUaBVLMmgWR0CkdSjxb0OFdX2UKGgGaAloD0MItmXAWUoW5b+UhpRSlGgVSzJoFkdApHTsW2w3YXV9lChoBmgJaA9DCOKUuflGdNm/lIaUUpRoFUsyaBZHQKR0rn8Kohp1ZS4="
|
83 |
},
|
84 |
"ep_success_buffer": {
|
85 |
":type:": "<class 'collections.deque'>",
|
86 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
87 |
},
|
88 |
+
"_n_updates": 31250,
|
89 |
+
"n_steps": 8,
|
90 |
"gamma": 0.99,
|
91 |
+
"gae_lambda": 0.9,
|
92 |
"ent_coef": 0.0,
|
93 |
+
"vf_coef": 0.4,
|
94 |
"max_grad_norm": 0.5,
|
95 |
"normalize_advantage": false
|
96 |
}
|
a2c-PandaReachDense-v2/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:26bf3f12a08fb0fbe6b756d452556fd0ac87dcfd7b8d7b0d420a0478a7181c5e
|
3 |
+
size 45438
|
a2c-PandaReachDense-v2/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ec557fcf54a5cf13e605b3e12a9360ead614e694ceadaddc021123e18ec4721f
|
3 |
+
size 46718
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fd27a4b0430>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fd27a4af580>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1678873721180986923, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAkXfjPi4nTzxbbw0/kXfjPi4nTzxbbw0/kXfjPi4nTzxbbw0/kXfjPi4nTzxbbw0/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAqQmLv4Urg798lpq/m6uNvmZ1LD5Nq/w+BPdDPobXTj7PmhW/IUIJPzYSx75hSWu+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACRd+M+LidPPFtvDT+03WA85WbIuu8HBTyRd+M+LidPPFtvDT+03WA85WbIuu8HBTyRd+M+LidPPFtvDT+03WA85WbIuu8HBTyRd+M+LidPPFtvDT+03WA85WbIuu8HBTyUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.4442716 0.01264362 0.5524804 ]\n [0.4442716 0.01264362 0.5524804 ]\n [0.4442716 0.01264362 0.5524804 ]\n [0.4442716 0.01264362 0.5524804 ]]", "desired_goal": "[[-1.0862323 -1.0247656 -1.2077174 ]\n [-0.27669987 0.16841659 0.49349442]\n [ 0.19137198 0.20199403 -0.58439344]\n [ 0.5361653 -0.3888108 -0.2297721 ]]", "observation": "[[ 0.4442716 0.01264362 0.5524804 0.01372473 -0.00152895 0.00811957]\n [ 0.4442716 0.01264362 0.5524804 0.01372473 -0.00152895 0.00811957]\n [ 0.4442716 0.01264362 0.5524804 0.01372473 -0.00152895 0.00811957]\n [ 0.4442716 0.01264362 0.5524804 0.01372473 -0.00152895 0.00811957]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA3h19vP0fAb4W9qo8MjFnvUv87z0l6QA+nn0GPYymBj4/qvs9RNllvQ7PBL4qbVA9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.01544902 -0.12609859 0.0208693 ]\n [-0.0564434 0.11718043 0.12588938]\n [ 0.03283464 0.1314947 0.12288331]\n [-0.0561154 -0.1296961 0.05088536]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIWW3+X3VECsCUhpRSlIwBbJRLMowBdJRHQKT2CnUlRgt1fZQoaAZoCWgPQwgQXOUJhB0FwJSGlFKUaBVLMmgWR0Ck9c3BYV7AdX2UKGgGaAloD0MIcxB0tKqFAsCUhpRSlGgVSzJoFkdApPWRTXJ5mnV9lChoBmgJaA9DCD9W8NsQYwnAlIaUUpRoFUsyaBZHQKT1VAhStNl1fZQoaAZoCWgPQwhX0R+aeXIFwJSGlFKUaBVLMmgWR0Ck9vWAPNFCdX2UKGgGaAloD0MIQ3OdRlrqDMCUhpRSlGgVSzJoFkdApPa4txuKoHV9lChoBmgJaA9DCHxETIkkmgvAlIaUUpRoFUsyaBZHQKT2fEWIoE11fZQoaAZoCWgPQwhkIxCv6/cFwJSGlFKUaBVLMmgWR0Ck9j8POIIodX2UKGgGaAloD0MIqUpbXOPTA8CUhpRSlGgVSzJoFkdApPfvjdYW+HV9lChoBmgJaA9DCAjjp3Fv3gPAlIaUUpRoFUsyaBZHQKT3ssiB5HF1fZQoaAZoCWgPQwgrhUAucQQJwJSGlFKUaBVLMmgWR0Ck93Z93KSxdX2UKGgGaAloD0MIlX7C2a2FBMCUhpRSlGgVSzJoFkdApPc5RoAXEnV9lChoBmgJaA9DCI+rkV1p+QfAlIaUUpRoFUsyaBZHQKT438Rcu8N1fZQoaAZoCWgPQwiBfAkVHB4NwJSGlFKUaBVLMmgWR0Ck+KLxI8QqdX2UKGgGaAloD0MIt2J/2T3ZB8CUhpRSlGgVSzJoFkdApPhmcriEQHV9lChoBmgJaA9DCFw+kpIehgXAlIaUUpRoFUsyaBZHQKT4KS3b2151fZQoaAZoCWgPQwhnSBXFqywEwJSGlFKUaBVLMmgWR0Ck+dwd8zAOdX2UKGgGaAloD0MI6zao/dYOB8CUhpRSlGgVSzJoFkdApPmfpnpSrHV9lChoBmgJaA9DCNO9TurLUgfAlIaUUpRoFUsyaBZHQKT5Y0LMLWt1fZQoaAZoCWgPQwiwHvet1gkJwJSGlFKUaBVLMmgWR0Ck+SYqgAZLdX2UKGgGaAloD0MIMEllijkIAsCUhpRSlGgVSzJoFkdApPrEy8BdU3V9lChoBmgJaA9DCMVwdQDEPQPAlIaUUpRoFUsyaBZHQKT6iBWgezV1fZQoaAZoCWgPQwiHb2HdeHcGwJSGlFKUaBVLMmgWR0Ck+kvJA+pwdX2UKGgGaAloD0MIRNsxdVdWA8CUhpRSlGgVSzJoFkdApPoOo1k1/HV9lChoBmgJaA9DCM+B5QgZiAHAlIaUUpRoFUsyaBZHQKT7wEzwc5t1fZQoaAZoCWgPQwizXDY654cFwJSGlFKUaBVLMmgWR0Ck+4OMl1KXdX2UKGgGaAloD0MIC0eQSrHDB8CUhpRSlGgVSzJoFkdApPtHdhy8z3V9lChoBmgJaA9DCHOFd7mILwbAlIaUUpRoFUsyaBZHQKT7ClMyrPt1fZQoaAZoCWgPQwjD1JY6yMsOwJSGlFKUaBVLMmgWR0Ck/KfCAMDwdX2UKGgGaAloD0MIGm7A54cRCsCUhpRSlGgVSzJoFkdApPxrGDL8rXV9lChoBmgJaA9DCLlSz4JQ/gLAlIaUUpRoFUsyaBZHQKT8LugpSaV1fZQoaAZoCWgPQwizeRwG8zcDwJSGlFKUaBVLMmgWR0Ck+/G/336AdX2UKGgGaAloD0MIvw8HCVG+A8CUhpRSlGgVSzJoFkdApP2Xlnyup3V9lChoBmgJaA9DCPc/wFq1a/6/lIaUUpRoFUsyaBZHQKT9Ws6q8151fZQoaAZoCWgPQwjw/KIE/YUEwJSGlFKUaBVLMmgWR0Ck/R6pxWDIdX2UKGgGaAloD0MInz2XqUnQAsCUhpRSlGgVSzJoFkdApPzhe7cwg3V9lChoBmgJaA9DCJOP3QVKygbAlIaUUpRoFUsyaBZHQKT+hndO6/Z1fZQoaAZoCWgPQwi2EyUhkTYGwJSGlFKUaBVLMmgWR0Ck/km6f8MvdX2UKGgGaAloD0MIchWL3xRWDsCUhpRSlGgVSzJoFkdApP4NhJAdGXV9lChoBmgJaA9DCC20c5oFGgHAlIaUUpRoFUsyaBZHQKT90FOfukV1fZQoaAZoCWgPQwiwPEhPkUMAwJSGlFKUaBVLMmgWR0Ck/3NMPBi1dX2UKGgGaAloD0MI4L2jxoSYAcCUhpRSlGgVSzJoFkdApP82pIczZnV9lChoBmgJaA9DCLluSnmtJADAlIaUUpRoFUsyaBZHQKT++kKNQ0p1fZQoaAZoCWgPQwj/ImjMJKoNwJSGlFKUaBVLMmgWR0Ck/r0nG828dX2UKGgGaAloD0MI+IvZklVxAMCUhpRSlGgVSzJoFkdApQBjdnCfpXV9lChoBmgJaA9DCDY//tKiHgbAlIaUUpRoFUsyaBZHQKUAJqv/zat1fZQoaAZoCWgPQwjYRdEDHwMCwJSGlFKUaBVLMmgWR0Ck/+o6CDmKdX2UKGgGaAloD0MIX9BCAkY3C8CUhpRSlGgVSzJoFkdApP+tJJ5E+nV9lChoBmgJaA9DCO6VeauuYwjAlIaUUpRoFUsyaBZHQKUBZfXPJJZ1fZQoaAZoCWgPQwi/0Y4bfhcFwJSGlFKUaBVLMmgWR0ClASlFc6eYdX2UKGgGaAloD0MIar+1EyXhBcCUhpRSlGgVSzJoFkdApQDs0aZQYXV9lChoBmgJaA9DCGBzDp4JbQ3AlIaUUpRoFUsyaBZHQKUAsAtFrmB1fZQoaAZoCWgPQwi77q1ITNAPwJSGlFKUaBVLMmgWR0ClAkhUJfICdX2UKGgGaAloD0MIM4l6wae5AMCUhpRSlGgVSzJoFkdApQILjBEa2nV9lChoBmgJaA9DCFxzR//Ldfy/lIaUUpRoFUsyaBZHQKUBzwDvE0l1fZQoaAZoCWgPQwiMZI9QM6QHwJSGlFKUaBVLMmgWR0ClAZHR9gF5dX2UKGgGaAloD0MIWkdVE0R9B8CUhpRSlGgVSzJoFkdApQMuXu3MIXV9lChoBmgJaA9DCLclcsEZnAvAlIaUUpRoFUsyaBZHQKUC8anaWX11fZQoaAZoCWgPQwjSxaaVQkAAwJSGlFKUaBVLMmgWR0ClArV+qioLdX2UKGgGaAloD0MIBkzg1t3cA8CUhpRSlGgVSzJoFkdApQJ4RRMviHV9lChoBmgJaA9DCElnYORlLQbAlIaUUpRoFUsyaBZHQKUEHgDRtxd1fZQoaAZoCWgPQwgDWyVYHC4HwJSGlFKUaBVLMmgWR0ClA+FD4QBgdX2UKGgGaAloD0MIDoXP1sFhAcCUhpRSlGgVSzJoFkdApQOk0Ltu1nV9lChoBmgJaA9DCKEPlrGhewDAlIaUUpRoFUsyaBZHQKUDZ62v0RR1fZQoaAZoCWgPQwg8a7ddaC7+v5SGlFKUaBVLMmgWR0ClBSfHHWBjdX2UKGgGaAloD0MISwLU1LJ1/7+UhpRSlGgVSzJoFkdApQTrZUT+N3V9lChoBmgJaA9DCDV8C+vGO/y/lIaUUpRoFUsyaBZHQKUEruqm0md1fZQoaAZoCWgPQwhdGr/wSvINwJSGlFKUaBVLMmgWR0ClBHJBomG/dX2UKGgGaAloD0MISrVPx2MGAsCUhpRSlGgVSzJoFkdApQZTZ6D5CXV9lChoBmgJaA9DCE5Ev7Z+ugvAlIaUUpRoFUsyaBZHQKUGF101ZT11fZQoaAZoCWgPQwjXS1MEON0JwJSGlFKUaBVLMmgWR0ClBdsQd0aIdX2UKGgGaAloD0MIbR6HwfxVCsCUhpRSlGgVSzJoFkdApQWenEVFhHV9lChoBmgJaA9DCG6+Ed2z7v2/lIaUUpRoFUsyaBZHQKUHWqwyIpJ1fZQoaAZoCWgPQwgbD7bY7XMFwJSGlFKUaBVLMmgWR0ClBx35N47jdX2UKGgGaAloD0MIj9/b9Ge//7+UhpRSlGgVSzJoFkdApQbhjvuw5nV9lChoBmgJaA9DCO571F+vcPu/lIaUUpRoFUsyaBZHQKUGpHEMspZ1fZQoaAZoCWgPQwg+Xd2x2Ob8v5SGlFKUaBVLMmgWR0ClCEgj6eoUdX2UKGgGaAloD0MIWb4uw3+6AMCUhpRSlGgVSzJoFkdApQgLa9K28nV9lChoBmgJaA9DCLgGtkqwWADAlIaUUpRoFUsyaBZHQKUHzxdY4hl1fZQoaAZoCWgPQwgS+pl63eIIwJSGlFKUaBVLMmgWR0ClB5HsLORldX2UKGgGaAloD0MIgJnv4CeOBsCUhpRSlGgVSzJoFkdApQlEIomXxHV9lChoBmgJaA9DCAk1Q6oofgPAlIaUUpRoFUsyaBZHQKUJB4Irvst1fZQoaAZoCWgPQwhq+uyA68oOwJSGlFKUaBVLMmgWR0ClCMsguAZsdX2UKGgGaAloD0MITgmISbgwBcCUhpRSlGgVSzJoFkdApQiN/YraunV9lChoBmgJaA9DCLYUkPY/4AjAlIaUUpRoFUsyaBZHQKUKPSApazN1fZQoaAZoCWgPQwjJcad0sJ4NwJSGlFKUaBVLMmgWR0ClCgBj4HopdX2UKGgGaAloD0MISbn7HB+t/7+UhpRSlGgVSzJoFkdApQnEGcFyJnV9lChoBmgJaA9DCEmCcAUUSgXAlIaUUpRoFUsyaBZHQKUJhwYtQKt1fZQoaAZoCWgPQwhEb/HwnsMDwJSGlFKUaBVLMmgWR0ClCzV0DEFXdX2UKGgGaAloD0MIQPflzHaF/r+UhpRSlGgVSzJoFkdApQr4rc0tRXV9lChoBmgJaA9DCEPlX8srF/u/lIaUUpRoFUsyaBZHQKUKvEhq0t11fZQoaAZoCWgPQwhK7NrebukEwJSGlFKUaBVLMmgWR0ClCn80k4WDdX2UKGgGaAloD0MISyAldm3PCMCUhpRSlGgVSzJoFkdApQxKKWLP2XV9lChoBmgJaA9DCCqnPSXnZALAlIaUUpRoFUsyaBZHQKUMDbfP5YZ1fZQoaAZoCWgPQwhfuHNhpBf+v5SGlFKUaBVLMmgWR0ClC9Gbb1yvdX2UKGgGaAloD0MIvyoXKv9a/L+UhpRSlGgVSzJoFkdApQuUqc3ERHV9lChoBmgJaA9DCCOHiJtTKQzAlIaUUpRoFUsyaBZHQKUNQ10knkV1fZQoaAZoCWgPQwgDz72HS87+v5SGlFKUaBVLMmgWR0ClDQarFOwgdX2UKGgGaAloD0MIkC42rRRCB8CUhpRSlGgVSzJoFkdApQzKOPvKEHV9lChoBmgJaA9DCIY7F0Z68QDAlIaUUpRoFUsyaBZHQKUMjP9kz411ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fd27a4b0430>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fd27a4af580>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1678885671915772445, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAnRDyPpHhpLvcPw4/nRDyPpHhpLvcPw4/nRDyPpHhpLvcPw4/nRDyPpHhpLvcPw4/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAALQ+Ov0fV0T+mGZi/aJwRP/v0CD+q9f0+816FP+opUr+yMFw/cV2FPzdp2b+zo+6+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACdEPI+keGku9w/Dj8psFY97ljZul5+Vz2dEPI+keGku9w/Dj8psFY97ljZul5+Vz2dEPI+keGku9w/Dj8psFY97ljZul5+Vz2dEPI+keGku9w/Dj8psFY97ljZul5+Vz2UaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.472783 -0.00503177 0.5556619 ]\n [ 0.472783 -0.00503177 0.5556619 ]\n [ 0.472783 -0.00503177 0.5556619 ]\n [ 0.472783 -0.00503177 0.5556619 ]]", "desired_goal": "[[-1.1098381 1.6393212 -1.1882827 ]\n [ 0.5687928 0.5349881 0.4960149 ]\n [ 1.0419601 -0.82095206 0.86011803]\n [ 1.0419141 -1.6985234 -0.46609268]]", "observation": "[[ 0.472783 -0.00503177 0.5556619 0.05241409 -0.00165823 0.05261075]\n [ 0.472783 -0.00503177 0.5556619 0.05241409 -0.00165823 0.05261075]\n [ 0.472783 -0.00503177 0.5556619 0.05241409 -0.00165823 0.05261075]\n [ 0.472783 -0.00503177 0.5556619 0.05241409 -0.00165823 0.05261075]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAZLxmPcXOgTwMIgo+ORoZPZY9k71pihg+2OLFvfwuZb3fQ0w+GoVuvH9WrL3v7Mk8lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.05633201 0.01584567 0.1348955 ]\n [ 0.03737852 -0.07189481 0.1489655 ]\n [-0.09662408 -0.05595301 0.19947766]\n [-0.0145581 -0.08414935 0.02464911]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI74/3qpWJ4L+UhpRSlIwBbJRLMowBdJRHQKRatMRpUPx1fZQoaAZoCWgPQwjScwtdiUDfv5SGlFKUaBVLMmgWR0CkWngrYoRadX2UKGgGaAloD0MITrNAu0OK4r+UhpRSlGgVSzJoFkdApFo7lLeyiXV9lChoBmgJaA9DCKwfm+RHfOC/lIaUUpRoFUsyaBZHQKRZ/bTMJQd1fZQoaAZoCWgPQwhFSx5Pyw/jv5SGlFKUaBVLMmgWR0CkW+ofKZDzdX2UKGgGaAloD0MI5DJuaqB54b+UhpRSlGgVSzJoFkdApFuthZyMk3V9lChoBmgJaA9DCHXo9LwbC8q/lIaUUpRoFUsyaBZHQKRbcPGyX2N1fZQoaAZoCWgPQwjul09WDFfgv5SGlFKUaBVLMmgWR0CkWzMkIHC5dX2UKGgGaAloD0MI91YkJqjhwb+UhpRSlGgVSzJoFkdApFzsqJ/G2nV9lChoBmgJaA9DCK7wLhfxndu/lIaUUpRoFUsyaBZHQKRcsDtgKF91fZQoaAZoCWgPQwgSa/EpAMbev5SGlFKUaBVLMmgWR0CkXHOGbkOqdX2UKGgGaAloD0MIkKLO3EPC4L+UhpRSlGgVSzJoFkdApFw1enhsInV9lChoBmgJaA9DCCS5/If0W+u/lIaUUpRoFUsyaBZHQKRd+qG1x851fZQoaAZoCWgPQwghdNAlHHrhv5SGlFKUaBVLMmgWR0CkXb4AsCkodX2UKGgGaAloD0MIiXssfeiC27+UhpRSlGgVSzJoFkdApF2BSDRMOHV9lChoBmgJaA9DCD1fs1w2uue/lIaUUpRoFUsyaBZHQKRdQwnH/951fZQoaAZoCWgPQwgR4V8EjZnYv5SGlFKUaBVLMmgWR0CkXwmITGo8dX2UKGgGaAloD0MIhZhLqrYb6L+UhpRSlGgVSzJoFkdApF7NAu7HyXV9lChoBmgJaA9DCBbAlIEDWuK/lIaUUpRoFUsyaBZHQKRekGWUr091fZQoaAZoCWgPQwjrjzAMWHLrv5SGlFKUaBVLMmgWR0CkXlKSX+l1dX2UKGgGaAloD0MIvAZ96e3P5L+UhpRSlGgVSzJoFkdApGAhEDyOJnV9lChoBmgJaA9DCPj6WpcaIfS/lIaUUpRoFUsyaBZHQKRf5L2YfGN1fZQoaAZoCWgPQwh8R40JMZfSv5SGlFKUaBVLMmgWR0CkX6gc94eLdX2UKGgGaAloD0MIOfHVjuIc2L+UhpRSlGgVSzJoFkdApF9qP4mCy3V9lChoBmgJaA9DCMR8eQH20dW/lIaUUpRoFUsyaBZHQKRhIJlar3l1fZQoaAZoCWgPQwhX7ZqQ1hjWv5SGlFKUaBVLMmgWR0CkYOQUYbbUdX2UKGgGaAloD0MIfuNrzywJ3r+UhpRSlGgVSzJoFkdApGCnechC+nV9lChoBmgJaA9DCNKsbB/yls+/lIaUUpRoFUsyaBZHQKRgaZa3Zwp1fZQoaAZoCWgPQwjYSBKEK6Dbv5SGlFKUaBVLMmgWR0CkYjMq8UVSdX2UKGgGaAloD0MIRzgteNFX6r+UhpRSlGgVSzJoFkdApGH2sFMZg3V9lChoBmgJaA9DCMMRpFLs6Om/lIaUUpRoFUsyaBZHQKRhugezUqh1fZQoaAZoCWgPQwjhJM0f09rZv5SGlFKUaBVLMmgWR0CkYXv3ztkXdX2UKGgGaAloD0MId4cUAyQa4r+UhpRSlGgVSzJoFkdApGMwXbdrPHV9lChoBmgJaA9DCMtlo3N+CuG/lIaUUpRoFUsyaBZHQKRi8/cnE2p1fZQoaAZoCWgPQwj+8PPfg1fvv5SGlFKUaBVLMmgWR0CkYrcxKxs3dX2UKGgGaAloD0MIPiE7b2Oz17+UhpRSlGgVSzJoFkdApGJ5HEuQIXV9lChoBmgJaA9DCApLPKBsyty/lIaUUpRoFUsyaBZHQKRkR54W1tx1fZQoaAZoCWgPQwindLD+z2Huv5SGlFKUaBVLMmgWR0CkZAsglnh9dX2UKGgGaAloD0MIxa7t7Zbk4r+UhpRSlGgVSzJoFkdApGPOnMt9QXV9lChoBmgJaA9DCLAgzVg0nce/lIaUUpRoFUsyaBZHQKRjkLJjlPt1fZQoaAZoCWgPQwgFptO6Derrv5SGlFKUaBVLMmgWR0CkZVajnFHbdX2UKGgGaAloD0MICW8PQkC+4b+UhpRSlGgVSzJoFkdApGUaNIbwSnV9lChoBmgJaA9DCG/0MR8Q6Nm/lIaUUpRoFUsyaBZHQKRk3YxtYSx1fZQoaAZoCWgPQwhHHogs0kTmv5SGlFKUaBVLMmgWR0CkZJ+1rqMWdX2UKGgGaAloD0MIqfi/IypU6L+UhpRSlGgVSzJoFkdApGZ//o7muHV9lChoBmgJaA9DCNF2TN2VXdi/lIaUUpRoFUsyaBZHQKRmQ4SYgJV1fZQoaAZoCWgPQwjDRe7p6g7zv5SGlFKUaBVLMmgWR0CkZgfoRqXXdX2UKGgGaAloD0MIoDcVqTC28L+UhpRSlGgVSzJoFkdApGXJwwTM7nV9lChoBmgJaA9DCHkDzHwHP9i/lIaUUpRoFUsyaBZHQKRnk4TbnHN1fZQoaAZoCWgPQwidEDroEg7kv5SGlFKUaBVLMmgWR0CkZ1cqWkaddX2UKGgGaAloD0MIDOnwEMZP37+UhpRSlGgVSzJoFkdApGcaZ+hGpnV9lChoBmgJaA9DCIicvp6vWd+/lIaUUpRoFUsyaBZHQKRm3IIWxhV1fZQoaAZoCWgPQwjn3y77dafgv5SGlFKUaBVLMmgWR0CkaMH+IdlvdX2UKGgGaAloD0MILESHwJFA77+UhpRSlGgVSzJoFkdApGiFj0+TvHV9lChoBmgJaA9DCJqWWBmNfNy/lIaUUpRoFUsyaBZHQKRoSQRwqAl1fZQoaAZoCWgPQwjCGJEotKzav5SGlFKUaBVLMmgWR0CkaAs9SuQqdX2UKGgGaAloD0MIq+rld5rM4L+UhpRSlGgVSzJoFkdApGnoz544ZXV9lChoBmgJaA9DCBCSBUzg1tm/lIaUUpRoFUsyaBZHQKRprGWD6Fd1fZQoaAZoCWgPQwisU+V7RiLOv5SGlFKUaBVLMmgWR0CkaW/G+9J0dX2UKGgGaAloD0MIeCefHtuy6r+UhpRSlGgVSzJoFkdApGkyHmA9V3V9lChoBmgJaA9DCEmhLHx9LeS/lIaUUpRoFUsyaBZHQKRrLm/336B1fZQoaAZoCWgPQwh3g2itaHPGv5SGlFKUaBVLMmgWR0CkavIEr5IpdX2UKGgGaAloD0MIELOXbaet4L+UhpRSlGgVSzJoFkdApGq1enhsInV9lChoBmgJaA9DCPEr1nCRe+y/lIaUUpRoFUsyaBZHQKRqeLS/j811fZQoaAZoCWgPQwiU+NwJ9t/hv5SGlFKUaBVLMmgWR0CkbFhdMTN/dX2UKGgGaAloD0MIRbqfU5Cf17+UhpRSlGgVSzJoFkdApGwb4Ju2qnV9lChoBmgJaA9DCJvo81FGXOW/lIaUUpRoFUsyaBZHQKRr31fVqet1fZQoaAZoCWgPQwh/EwoRcIjqv5SGlFKUaBVLMmgWR0Cka6FmWdEtdX2UKGgGaAloD0MIYk7QJodP3b+UhpRSlGgVSzJoFkdApG2InOSntXV9lChoBmgJaA9DCM+hDFUxFe2/lIaUUpRoFUsyaBZHQKRtTCpm29d1fZQoaAZoCWgPQwhGfZI7bCLdv5SGlFKUaBVLMmgWR0CkbQ+hoM8YdX2UKGgGaAloD0MIVgvsMZFS7r+UhpRSlGgVSzJoFkdApGzR2IO6NHV9lChoBmgJaA9DCL0BZr6DX/C/lIaUUpRoFUsyaBZHQKRuzskY4yZ1fZQoaAZoCWgPQwinejL/6Bviv5SGlFKUaBVLMmgWR0CkbpKF7D2rdX2UKGgGaAloD0MIev1JfO6E7b+UhpRSlGgVSzJoFkdApG5WLJjlP3V9lChoBmgJaA9DCFKZYg6Cjum/lIaUUpRoFUsyaBZHQKRuGFSsKb91fZQoaAZoCWgPQwg0Tdh+Msbzv5SGlFKUaBVLMmgWR0Ckb+/pdKNAdX2UKGgGaAloD0MIARdky/J11b+UhpRSlGgVSzJoFkdApG+zqyGBWnV9lChoBmgJaA9DCPWCT3PyIum/lIaUUpRoFUsyaBZHQKRvd5P/JeV1fZQoaAZoCWgPQwhT7Ggc6vfuv5SGlFKUaBVLMmgWR0CkbzpsO5J9dX2UKGgGaAloD0MIL/fJUYAo1r+UhpRSlGgVSzJoFkdApHD7kdV/+nV9lChoBmgJaA9DCEPFOH8TiuC/lIaUUpRoFUsyaBZHQKRwvvAGjbl1fZQoaAZoCWgPQwiiCKnb2Vfev5SGlFKUaBVLMmgWR0CkcII2wV0tdX2UKGgGaAloD0MI9RPObi2T7b+UhpRSlGgVSzJoFkdApHBEP+XJHXV9lChoBmgJaA9DCGTrGcIxS+2/lIaUUpRoFUsyaBZHQKRyOi+tbLV1fZQoaAZoCWgPQwjGbp9VZkrrv5SGlFKUaBVLMmgWR0Ckcf3PRiPRdX2UKGgGaAloD0MIthDkoIQZ5L+UhpRSlGgVSzJoFkdApHHBSJj2BnV9lChoBmgJaA9DCCDT2jS2V+O/lIaUUpRoFUsyaBZHQKRxg24uscR1fZQoaAZoCWgPQwinBS/6CtLkv5SGlFKUaBVLMmgWR0Ckc0hSDRMOdX2UKGgGaAloD0MIYD3uW62T+L+UhpRSlGgVSzJoFkdApHMLz/ZM+XV9lChoBmgJaA9DCGed8X1xafC/lIaUUpRoFUsyaBZHQKRyzyLhrFh1fZQoaAZoCWgPQwg4EJIFTODxv5SGlFKUaBVLMmgWR0CkcpE7W/ahdX2UKGgGaAloD0MIec4WEFoP3r+UhpRSlGgVSzJoFkdApHRTHIZIhHV9lChoBmgJaA9DCEmBBTBl4OS/lIaUUpRoFUsyaBZHQKR0FsF+uvF1fZQoaAZoCWgPQwhJEoQroFDjv5SGlFKUaBVLMmgWR0Ckc9o4dZJTdX2UKGgGaAloD0MInrRwWYWN9L+UhpRSlGgVSzJoFkdApHOcbvPTonV9lChoBmgJaA9DCDKrd7gdGuG/lIaUUpRoFUsyaBZHQKR1ZNVzZHx1fZQoaAZoCWgPQwh9Ik+Srpnyv5SGlFKUaBVLMmgWR0CkdSjxb0OFdX2UKGgGaAloD0MItmXAWUoW5b+UhpRSlGgVSzJoFkdApHTsW2w3YXV9lChoBmgJaA9DCOKUuflGdNm/lIaUUpRoFUsyaBZHQKR0rn8Kohp1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 31250, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward": -
|
|
|
1 |
+
{"mean_reward": -0.9429974053986371, "std_reward": 0.2948627190983979, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-15T14:39:14.895353"}
|
vec_normalize.pkl
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 3056
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:41fe34327bca60c658c83e8348e3c96c9631799440842da7136a1b5d740b4714
|
3 |
size 3056
|