Upload PPO LunarLander-v2 trained agent
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +94 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +7 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 276.34 +/- 22.69
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f9a01abd790>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f9a01abd820>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f9a01abd8b0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f9a01abd940>", "_build": "<function ActorCriticPolicy._build at 0x7f9a01abd9d0>", "forward": "<function ActorCriticPolicy.forward at 0x7f9a01abda60>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f9a01abdaf0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f9a01abdb80>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f9a01abdc10>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f9a01abdca0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f9a01abdd30>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f9a01ac0120>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1671191188424299199, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAABKArxP5CO8lSA/u16/hTwIrI89PlRevQAAgD8AAIA/GjDgPQC/XD/F0WI9Na0Vv6hEiT4Iy3Y8AAAAAAAAAABmDhW8QS6TvJBdKb3p6os94zlNPRtwTrsAAIA/AACAP5o3nTyOv4C8cwHwOzqjJTxFjy+85XsIvQAAgD8AAIA/zTc0vWwnvruCBCw8dO8EPShQGT217du9AACAPwAAgD9mqM+8vbV0PxZSPL3lsgW/LlxlvZs2Mr0AAAAAAAAAAO02jj4IQu4+DgQAvjz0H7/Bkws/8IxtvgAAAAAAAAAAwHSdvgmsgj/AnmK+9gYov3gX3L4enmc9AAAAAAAAAACDt1++ygJcP8QqKTzu1fS+UsJ0voW5AD4AAAAAAAAAAACghbxsK6K72vebOqOmmDuhAwk9MgCQvAAAgD8AAIA/WtuzvZsqkT7lQpI+U56+vnrtvz10LZ49AAAAAAAAAADmVGY9qAntPg/tnL1jr8a+7BWXPdlKKL0AAAAAAAAAADMz/byuz4a6uTS1NSREtTBg3SK7M9TztAAAgD8AAIA/ALyoO5wLJLz2zMa7xnEFPW+ykT2QnNe9AACAPwAAgD+ajSE8e/SKujYQqrpRY6W2OSU3u7rsxTkAAIA/AACAP5pY0TzPS2g9QhKCvvRtqr5F76i+wKx1PQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMID313K8uBcECUhpRSlIwBbJRL5IwBdJRHQMh1qTspobp1fZQoaAZoCWgPQwiL/WX3pEBxQJSGlFKUaBVLzmgWR0DIda81Gb1AdX2UKGgGaAloD0MIhQmjWZkcckCUhpRSlGgVS8poFkdAyHWxcu8K5XV9lChoBmgJaA9DCLyuX7Cbf3NAlIaUUpRoFUv1aBZHQMh1u256MR91fZQoaAZoCWgPQwhDqiheJbtwQJSGlFKUaBVL12gWR0DIdcTN8ma6dX2UKGgGaAloD0MIEarU7AFdbkCUhpRSlGgVS+doFkdAyHXdw8W9DnV9lChoBmgJaA9DCKVo5V5gH25AlIaUUpRoFUu8aBZHQMh17sMqjJx1fZQoaAZoCWgPQwjp19ZPP/ZxQJSGlFKUaBVL2WgWR0DIdfEnogV5dX2UKGgGaAloD0MILXx9rcuMcUCUhpRSlGgVS+xoFkdAyHYIMNtqH3V9lChoBmgJaA9DCA2nzM13+3BAlIaUUpRoFUvXaBZHQMh2Fw5myxB1fZQoaAZoCWgPQwgyqgzjbktuQJSGlFKUaBVL12gWR0DIdhhqM3qBdX2UKGgGaAloD0MIOq+xS1RBcECUhpRSlGgVS8xoFkdAyHYYLQ5WBHV9lChoBmgJaA9DCJI+raJ/7HFAlIaUUpRoFUvhaBZHQMh2H2MsH0N1fZQoaAZoCWgPQwh/iXjr/MZzQJSGlFKUaBVLy2gWR0DIdis2zfJndX2UKGgGaAloD0MIwD3Pn/YUckCUhpRSlGgVS7toFkdAyHY473fygHV9lChoBmgJaA9DCJW3I5yWyXFAlIaUUpRoFUvpaBZHQMh2OaxX4j91fZQoaAZoCWgPQwiLVBhbiIhyQJSGlFKUaBVL3GgWR0DIdj2f7JnydX2UKGgGaAloD0MIO6qaIKrVckCUhpRSlGgVS9FoFkdAyHZQcebNKXV9lChoBmgJaA9DCLX66qrAlHNAlIaUUpRoFUvuaBZHQMh2ZEJrtVt1fZQoaAZoCWgPQwhP6WD93/twQJSGlFKUaBVL5GgWR0DIdmnCGetkdX2UKGgGaAloD0MIv7fpzz6kcECUhpRSlGgVS/VoFkdAyHaBgLJCB3V9lChoBmgJaA9DCJdV2AywaHBAlIaUUpRoFUu9aBZHQMh2g3fhuO11fZQoaAZoCWgPQwjBVgkWB5ByQJSGlFKUaBVL6mgWR0DIdpNg4OtodX2UKGgGaAloD0MIqhCPxItGckCUhpRSlGgVS99oFkdAyHabtCzC13V9lChoBmgJaA9DCMU6Vb4naHJAlIaUUpRoFUvTaBZHQMh2q3arWAh1fZQoaAZoCWgPQwhANPPkWqVxQJSGlFKUaBVLzmgWR0DIfNYr4FibdX2UKGgGaAloD0MI4j5ya1KqcECUhpRSlGgVS99oFkdAyHzlZlnRLXV9lChoBmgJaA9DCMstrYYE/HJAlIaUUpRoFUvgaBZHQMh85fjKgZl1fZQoaAZoCWgPQwiE1y5tuGtvQJSGlFKUaBVL0mgWR0DIfO6KekHldX2UKGgGaAloD0MILGfvjPbpckCUhpRSlGgVS8FoFkdAyHzwEIw/PnV9lChoBmgJaA9DCDiCVIqdx3FAlIaUUpRoFUv1aBZHQMh8/YqG1x91fZQoaAZoCWgPQwhyjGSP0N1yQJSGlFKUaBVL2WgWR0DIfQaf6Gg0dX2UKGgGaAloD0MIkgThCmgrcECUhpRSlGgVS+BoFkdAyH0HNIK+jHV9lChoBmgJaA9DCB3oobYNBG9AlIaUUpRoFUvfaBZHQMh9Het8uz11fZQoaAZoCWgPQwjptkQueFxyQJSGlFKUaBVL8mgWR0DIfUJAGB4EdX2UKGgGaAloD0MIf8LZrSVrckCUhpRSlGgVS9VoFkdAyH1JObiIcnV9lChoBmgJaA9DCNumeFyUEnFAlIaUUpRoFUv6aBZHQMh9TswDeTF1fZQoaAZoCWgPQwi/mgME87dxQJSGlFKUaBVL1mgWR0DIfWTaTOgQdX2UKGgGaAloD0MIi2zn+ylackCUhpRSlGgVS7loFkdAyH1nYMfA9HV9lChoBmgJaA9DCDNqvkp+93BAlIaUUpRoFUvlaBZHQMh9aK20AtF1fZQoaAZoCWgPQwj3V4/7lr9wQJSGlFKUaBVLyGgWR0DIfWmKyfL+dX2UKGgGaAloD0MIXmbYKGtxc0CUhpRSlGgVTQABaBZHQMh9bXPRiPR1fZQoaAZoCWgPQwinrRHBuCdzQJSGlFKUaBVL02gWR0DIfYi8cuJ2dX2UKGgGaAloD0MIFFrW/SOlc0CUhpRSlGgVS+NoFkdAyH2VJnxri3V9lChoBmgJaA9DCIHMzqJ3EHNAlIaUUpRoFUvoaBZHQMh9o19fCyh1fZQoaAZoCWgPQwg5Kcx7XNRyQJSGlFKUaBVL62gWR0DIfbYevIOpdX2UKGgGaAloD0MIbNECtO0Ic0CUhpRSlGgVTQABaBZHQMh9uVpTMq11fZQoaAZoCWgPQwhjm1Q0VgxxQJSGlFKUaBVL5WgWR0DIfbvzWf9QdX2UKGgGaAloD0MIBU8hV6r5cECUhpRSlGgVS/FoFkdAyH3EezUqhHV9lChoBmgJaA9DCMgnZOctM3JAlIaUUpRoFUvYaBZHQMh9ykZR8+l1fZQoaAZoCWgPQwiS66aUV2BuQJSGlFKUaBVLzmgWR0DIfeRmh/RWdX2UKGgGaAloD0MI+fTYlsGbcUCUhpRSlGgVS+ZoFkdAyH3+0elsQHV9lChoBmgJaA9DCF2MgXXcqnNAlIaUUpRoFUvEaBZHQMh9/2dNFjN1fZQoaAZoCWgPQwjDmsqicOdyQJSGlFKUaBVLwWgWR0DIfgYIY3vQdX2UKGgGaAloD0MIdlQ1QdQxc0CUhpRSlGgVS/doFkdAyH4SmShaknV9lChoBmgJaA9DCK4q+65I2nFAlIaUUpRoFUvYaBZHQMh+E7Y02tN1fZQoaAZoCWgPQwiFP8ObdWxyQJSGlFKUaBVL3GgWR0DIfhdvybx3dX2UKGgGaAloD0MIkzZV90gAckCUhpRSlGgVS95oFkdAyH4XBzmwJXV9lChoBmgJaA9DCIbI6ev5tFBAlIaUUpRoFUt+aBZHQMh+GbZWaMJ1fZQoaAZoCWgPQwh1BHCzeBVxQJSGlFKUaBVLumgWR0DIfie+VTrFdX2UKGgGaAloD0MIavZAK7CXcUCUhpRSlGgVS8toFkdAyH4oyN4qw3V9lChoBmgJaA9DCM6I0t6gzHFAlIaUUpRoFUvBaBZHQMh+N0iILw51fZQoaAZoCWgPQwjSxaaVQoVtQJSGlFKUaBVLz2gWR0DIflSFTNt7dX2UKGgGaAloD0MIs14M5UR2VUCUhpRSlGgVS5xoFkdAyH5ZSYPXkHV9lChoBmgJaA9DCKVJKeh2unNAlIaUUpRoFUvMaBZHQMh+Yx46fap1fZQoaAZoCWgPQwhuGXCWUmRxQJSGlFKUaBVL3GgWR0DIfmleF+NMdX2UKGgGaAloD0MIhPHTuLdYcECUhpRSlGgVS/BoFkdAyH5v3A2ycHV9lChoBmgJaA9DCJ+tg4O9m3NAlIaUUpRoFUvQaBZHQMh+mgRkEs91fZQoaAZoCWgPQwi5jQbwVs1xQJSGlFKUaBVLymgWR0DIfq/xOLzgdX2UKGgGaAloD0MI6e3PRUN3cUCUhpRSlGgVS9JoFkdAyH6ywQDmsHV9lChoBmgJaA9DCKLvbmWJmnFAlIaUUpRoFUvjaBZHQMh+s4z7/GV1fZQoaAZoCWgPQwjVPh2PGcZwQJSGlFKUaBVLx2gWR0DIfsQw7DEWdX2UKGgGaAloD0MIHQJHAk2ccECUhpRSlGgVS+1oFkdAyH7JYDDCQHV9lChoBmgJaA9DCFBvRs1XPG9AlIaUUpRoFUvTaBZHQMh+zN1p0wJ1fZQoaAZoCWgPQwilZg+0wuBzQJSGlFKUaBVNCAFoFkdAyH7MiwjdHnV9lChoBmgJaA9DCNAoXfqXAHNAlIaUUpRoFUvtaBZHQMh+zesPrfN1fZQoaAZoCWgPQwj6tIr+UHlxQJSGlFKUaBVL8GgWR0DIftKZ2IO6dX2UKGgGaAloD0MI4LvNG2ejcECUhpRSlGgVS9VoFkdAyH7ehVU+93V9lChoBmgJaA9DCPsD5bb9NXFAlIaUUpRoFUvRaBZHQMh+97hFVkt1fZQoaAZoCWgPQwgKaY1BJ3pxQJSGlFKUaBVL6GgWR0DIfw4V9F4LdX2UKGgGaAloD0MI1/oioS01c0CUhpRSlGgVS+NoFkdAyH8UPhhpg3V9lChoBmgJaA9DCK4oJQRrW3FAlIaUUpRoFUvTaBZHQMh/FRFy7wt1fZQoaAZoCWgPQwirr64KlBV0QJSGlFKUaBVL6WgWR0DIfx6PfbbldX2UKGgGaAloD0MI6LtbWeKUcUCUhpRSlGgVS8hoFkdAyH81lkH2RXV9lChoBmgJaA9DCGlznNsEj3FAlIaUUpRoFUvJaBZHQMh/X2Cdz4l1fZQoaAZoCWgPQwgr3PKR1PhyQJSGlFKUaBVLumgWR0DIf2KWHDaXdX2UKGgGaAloD0MInfLoRph6cECUhpRSlGgVS+BoFkdAyH9jOzIFNnV9lChoBmgJaA9DCCPZI9QM2HBAlIaUUpRoFUvmaBZHQMh/ZV/+bVl1fZQoaAZoCWgPQwgPRYE+EaZxQJSGlFKUaBVLyWgWR0DIf2VKAavSdX2UKGgGaAloD0MIQkKUL+gCckCUhpRSlGgVS8doFkdAyH9mtYB/7XV9lChoBmgJaA9DCN18I7pnbm5AlIaUUpRoFUvWaBZHQMh/crHEMsp1fZQoaAZoCWgPQwjRyr3AbLVxQJSGlFKUaBVL92gWR0DIf3Tfxc3VdX2UKGgGaAloD0MIxa7t7ZZ7cUCUhpRSlGgVS9xoFkdAyH94Ce2/jHV9lChoBmgJaA9DCMOedvhrwHBAlIaUUpRoFUvgaBZHQMh/i2R7qpt1fZQoaAZoCWgPQwi0qiUd5fdtQJSGlFKUaBVLzWgWR0DIf5dwrDqGdX2UKGgGaAloD0MIO6buyu4bcECUhpRSlGgVS8toFkdAyH+ywqRU3nV9lChoBmgJaA9DCAiT4uMTuXBAlIaUUpRoFUvYaBZHQMh/tgDRtxd1fZQoaAZoCWgPQwiCVfXyO69xQJSGlFKUaBVL22gWR0DIf75zV+ZxdX2UKGgGaAloD0MI3KD2WzthbkCUhpRSlGgVS9poFkdAyH/Ibc45tHV9lChoBmgJaA9DCPUTzm7tGXRAlIaUUpRoFUvEaBZHQMh/zi1qnFZ1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 620, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a5d751dced777f5e67c7e65c5d116c2bf815f33a23584c3e600a266d7dac9330
|
3 |
+
size 147091
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.6.2
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f9a01abd790>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f9a01abd820>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f9a01abd8b0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f9a01abd940>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f9a01abd9d0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f9a01abda60>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f9a01abdaf0>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f9a01abdb80>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f9a01abdc10>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f9a01abdca0>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f9a01abdd30>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7f9a01ac0120>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 1015808,
|
46 |
+
"_total_timesteps": 1000000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1671191188424299199,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAABKArxP5CO8lSA/u16/hTwIrI89PlRevQAAgD8AAIA/GjDgPQC/XD/F0WI9Na0Vv6hEiT4Iy3Y8AAAAAAAAAABmDhW8QS6TvJBdKb3p6os94zlNPRtwTrsAAIA/AACAP5o3nTyOv4C8cwHwOzqjJTxFjy+85XsIvQAAgD8AAIA/zTc0vWwnvruCBCw8dO8EPShQGT217du9AACAPwAAgD9mqM+8vbV0PxZSPL3lsgW/LlxlvZs2Mr0AAAAAAAAAAO02jj4IQu4+DgQAvjz0H7/Bkws/8IxtvgAAAAAAAAAAwHSdvgmsgj/AnmK+9gYov3gX3L4enmc9AAAAAAAAAACDt1++ygJcP8QqKTzu1fS+UsJ0voW5AD4AAAAAAAAAAACghbxsK6K72vebOqOmmDuhAwk9MgCQvAAAgD8AAIA/WtuzvZsqkT7lQpI+U56+vnrtvz10LZ49AAAAAAAAAADmVGY9qAntPg/tnL1jr8a+7BWXPdlKKL0AAAAAAAAAADMz/byuz4a6uTS1NSREtTBg3SK7M9TztAAAgD8AAIA/ALyoO5wLJLz2zMa7xnEFPW+ykT2QnNe9AACAPwAAgD+ajSE8e/SKujYQqrpRY6W2OSU3u7rsxTkAAIA/AACAP5pY0TzPS2g9QhKCvvRtqr5F76i+wKx1PQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.015808000000000044,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVIBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMID313K8uBcECUhpRSlIwBbJRL5IwBdJRHQMh1qTspobp1fZQoaAZoCWgPQwiL/WX3pEBxQJSGlFKUaBVLzmgWR0DIda81Gb1AdX2UKGgGaAloD0MIhQmjWZkcckCUhpRSlGgVS8poFkdAyHWxcu8K5XV9lChoBmgJaA9DCLyuX7Cbf3NAlIaUUpRoFUv1aBZHQMh1u256MR91fZQoaAZoCWgPQwhDqiheJbtwQJSGlFKUaBVL12gWR0DIdcTN8ma6dX2UKGgGaAloD0MIEarU7AFdbkCUhpRSlGgVS+doFkdAyHXdw8W9DnV9lChoBmgJaA9DCKVo5V5gH25AlIaUUpRoFUu8aBZHQMh17sMqjJx1fZQoaAZoCWgPQwjp19ZPP/ZxQJSGlFKUaBVL2WgWR0DIdfEnogV5dX2UKGgGaAloD0MILXx9rcuMcUCUhpRSlGgVS+xoFkdAyHYIMNtqH3V9lChoBmgJaA9DCA2nzM13+3BAlIaUUpRoFUvXaBZHQMh2Fw5myxB1fZQoaAZoCWgPQwgyqgzjbktuQJSGlFKUaBVL12gWR0DIdhhqM3qBdX2UKGgGaAloD0MIOq+xS1RBcECUhpRSlGgVS8xoFkdAyHYYLQ5WBHV9lChoBmgJaA9DCJI+raJ/7HFAlIaUUpRoFUvhaBZHQMh2H2MsH0N1fZQoaAZoCWgPQwh/iXjr/MZzQJSGlFKUaBVLy2gWR0DIdis2zfJndX2UKGgGaAloD0MIwD3Pn/YUckCUhpRSlGgVS7toFkdAyHY473fygHV9lChoBmgJaA9DCJW3I5yWyXFAlIaUUpRoFUvpaBZHQMh2OaxX4j91fZQoaAZoCWgPQwiLVBhbiIhyQJSGlFKUaBVL3GgWR0DIdj2f7JnydX2UKGgGaAloD0MIO6qaIKrVckCUhpRSlGgVS9FoFkdAyHZQcebNKXV9lChoBmgJaA9DCLX66qrAlHNAlIaUUpRoFUvuaBZHQMh2ZEJrtVt1fZQoaAZoCWgPQwhP6WD93/twQJSGlFKUaBVL5GgWR0DIdmnCGetkdX2UKGgGaAloD0MIv7fpzz6kcECUhpRSlGgVS/VoFkdAyHaBgLJCB3V9lChoBmgJaA9DCJdV2AywaHBAlIaUUpRoFUu9aBZHQMh2g3fhuO11fZQoaAZoCWgPQwjBVgkWB5ByQJSGlFKUaBVL6mgWR0DIdpNg4OtodX2UKGgGaAloD0MIqhCPxItGckCUhpRSlGgVS99oFkdAyHabtCzC13V9lChoBmgJaA9DCMU6Vb4naHJAlIaUUpRoFUvTaBZHQMh2q3arWAh1fZQoaAZoCWgPQwhANPPkWqVxQJSGlFKUaBVLzmgWR0DIfNYr4FibdX2UKGgGaAloD0MI4j5ya1KqcECUhpRSlGgVS99oFkdAyHzlZlnRLXV9lChoBmgJaA9DCMstrYYE/HJAlIaUUpRoFUvgaBZHQMh85fjKgZl1fZQoaAZoCWgPQwiE1y5tuGtvQJSGlFKUaBVL0mgWR0DIfO6KekHldX2UKGgGaAloD0MILGfvjPbpckCUhpRSlGgVS8FoFkdAyHzwEIw/PnV9lChoBmgJaA9DCDiCVIqdx3FAlIaUUpRoFUv1aBZHQMh8/YqG1x91fZQoaAZoCWgPQwhyjGSP0N1yQJSGlFKUaBVL2WgWR0DIfQaf6Gg0dX2UKGgGaAloD0MIkgThCmgrcECUhpRSlGgVS+BoFkdAyH0HNIK+jHV9lChoBmgJaA9DCB3oobYNBG9AlIaUUpRoFUvfaBZHQMh9Het8uz11fZQoaAZoCWgPQwjptkQueFxyQJSGlFKUaBVL8mgWR0DIfUJAGB4EdX2UKGgGaAloD0MIf8LZrSVrckCUhpRSlGgVS9VoFkdAyH1JObiIcnV9lChoBmgJaA9DCNumeFyUEnFAlIaUUpRoFUv6aBZHQMh9TswDeTF1fZQoaAZoCWgPQwi/mgME87dxQJSGlFKUaBVL1mgWR0DIfWTaTOgQdX2UKGgGaAloD0MIi2zn+ylackCUhpRSlGgVS7loFkdAyH1nYMfA9HV9lChoBmgJaA9DCDNqvkp+93BAlIaUUpRoFUvlaBZHQMh9aK20AtF1fZQoaAZoCWgPQwj3V4/7lr9wQJSGlFKUaBVLyGgWR0DIfWmKyfL+dX2UKGgGaAloD0MIXmbYKGtxc0CUhpRSlGgVTQABaBZHQMh9bXPRiPR1fZQoaAZoCWgPQwinrRHBuCdzQJSGlFKUaBVL02gWR0DIfYi8cuJ2dX2UKGgGaAloD0MIFFrW/SOlc0CUhpRSlGgVS+NoFkdAyH2VJnxri3V9lChoBmgJaA9DCIHMzqJ3EHNAlIaUUpRoFUvoaBZHQMh9o19fCyh1fZQoaAZoCWgPQwg5Kcx7XNRyQJSGlFKUaBVL62gWR0DIfbYevIOpdX2UKGgGaAloD0MIbNECtO0Ic0CUhpRSlGgVTQABaBZHQMh9uVpTMq11fZQoaAZoCWgPQwhjm1Q0VgxxQJSGlFKUaBVL5WgWR0DIfbvzWf9QdX2UKGgGaAloD0MIBU8hV6r5cECUhpRSlGgVS/FoFkdAyH3EezUqhHV9lChoBmgJaA9DCMgnZOctM3JAlIaUUpRoFUvYaBZHQMh9ykZR8+l1fZQoaAZoCWgPQwiS66aUV2BuQJSGlFKUaBVLzmgWR0DIfeRmh/RWdX2UKGgGaAloD0MI+fTYlsGbcUCUhpRSlGgVS+ZoFkdAyH3+0elsQHV9lChoBmgJaA9DCF2MgXXcqnNAlIaUUpRoFUvEaBZHQMh9/2dNFjN1fZQoaAZoCWgPQwjDmsqicOdyQJSGlFKUaBVLwWgWR0DIfgYIY3vQdX2UKGgGaAloD0MIdlQ1QdQxc0CUhpRSlGgVS/doFkdAyH4SmShaknV9lChoBmgJaA9DCK4q+65I2nFAlIaUUpRoFUvYaBZHQMh+E7Y02tN1fZQoaAZoCWgPQwiFP8ObdWxyQJSGlFKUaBVL3GgWR0DIfhdvybx3dX2UKGgGaAloD0MIkzZV90gAckCUhpRSlGgVS95oFkdAyH4XBzmwJXV9lChoBmgJaA9DCIbI6ev5tFBAlIaUUpRoFUt+aBZHQMh+GbZWaMJ1fZQoaAZoCWgPQwh1BHCzeBVxQJSGlFKUaBVLumgWR0DIfie+VTrFdX2UKGgGaAloD0MIavZAK7CXcUCUhpRSlGgVS8toFkdAyH4oyN4qw3V9lChoBmgJaA9DCM6I0t6gzHFAlIaUUpRoFUvBaBZHQMh+N0iILw51fZQoaAZoCWgPQwjSxaaVQoVtQJSGlFKUaBVLz2gWR0DIflSFTNt7dX2UKGgGaAloD0MIs14M5UR2VUCUhpRSlGgVS5xoFkdAyH5ZSYPXkHV9lChoBmgJaA9DCKVJKeh2unNAlIaUUpRoFUvMaBZHQMh+Yx46fap1fZQoaAZoCWgPQwhuGXCWUmRxQJSGlFKUaBVL3GgWR0DIfmleF+NMdX2UKGgGaAloD0MIhPHTuLdYcECUhpRSlGgVS/BoFkdAyH5v3A2ycHV9lChoBmgJaA9DCJ+tg4O9m3NAlIaUUpRoFUvQaBZHQMh+mgRkEs91fZQoaAZoCWgPQwi5jQbwVs1xQJSGlFKUaBVLymgWR0DIfq/xOLzgdX2UKGgGaAloD0MI6e3PRUN3cUCUhpRSlGgVS9JoFkdAyH6ywQDmsHV9lChoBmgJaA9DCKLvbmWJmnFAlIaUUpRoFUvjaBZHQMh+s4z7/GV1fZQoaAZoCWgPQwjVPh2PGcZwQJSGlFKUaBVLx2gWR0DIfsQw7DEWdX2UKGgGaAloD0MIHQJHAk2ccECUhpRSlGgVS+1oFkdAyH7JYDDCQHV9lChoBmgJaA9DCFBvRs1XPG9AlIaUUpRoFUvTaBZHQMh+zN1p0wJ1fZQoaAZoCWgPQwilZg+0wuBzQJSGlFKUaBVNCAFoFkdAyH7MiwjdHnV9lChoBmgJaA9DCNAoXfqXAHNAlIaUUpRoFUvtaBZHQMh+zesPrfN1fZQoaAZoCWgPQwj6tIr+UHlxQJSGlFKUaBVL8GgWR0DIftKZ2IO6dX2UKGgGaAloD0MI4LvNG2ejcECUhpRSlGgVS9VoFkdAyH7ehVU+93V9lChoBmgJaA9DCPsD5bb9NXFAlIaUUpRoFUvRaBZHQMh+97hFVkt1fZQoaAZoCWgPQwgKaY1BJ3pxQJSGlFKUaBVL6GgWR0DIfw4V9F4LdX2UKGgGaAloD0MI1/oioS01c0CUhpRSlGgVS+NoFkdAyH8UPhhpg3V9lChoBmgJaA9DCK4oJQRrW3FAlIaUUpRoFUvTaBZHQMh/FRFy7wt1fZQoaAZoCWgPQwirr64KlBV0QJSGlFKUaBVL6WgWR0DIfx6PfbbldX2UKGgGaAloD0MI6LtbWeKUcUCUhpRSlGgVS8hoFkdAyH81lkH2RXV9lChoBmgJaA9DCGlznNsEj3FAlIaUUpRoFUvJaBZHQMh/X2Cdz4l1fZQoaAZoCWgPQwgr3PKR1PhyQJSGlFKUaBVLumgWR0DIf2KWHDaXdX2UKGgGaAloD0MInfLoRph6cECUhpRSlGgVS+BoFkdAyH9jOzIFNnV9lChoBmgJaA9DCCPZI9QM2HBAlIaUUpRoFUvmaBZHQMh/ZV/+bVl1fZQoaAZoCWgPQwgPRYE+EaZxQJSGlFKUaBVLyWgWR0DIf2VKAavSdX2UKGgGaAloD0MIQkKUL+gCckCUhpRSlGgVS8doFkdAyH9mtYB/7XV9lChoBmgJaA9DCN18I7pnbm5AlIaUUpRoFUvWaBZHQMh/crHEMsp1fZQoaAZoCWgPQwjRyr3AbLVxQJSGlFKUaBVL92gWR0DIf3Tfxc3VdX2UKGgGaAloD0MIxa7t7ZZ7cUCUhpRSlGgVS9xoFkdAyH94Ce2/jHV9lChoBmgJaA9DCMOedvhrwHBAlIaUUpRoFUvgaBZHQMh/i2R7qpt1fZQoaAZoCWgPQwi0qiUd5fdtQJSGlFKUaBVLzWgWR0DIf5dwrDqGdX2UKGgGaAloD0MIO6buyu4bcECUhpRSlGgVS8toFkdAyH+ywqRU3nV9lChoBmgJaA9DCAiT4uMTuXBAlIaUUpRoFUvYaBZHQMh/tgDRtxd1fZQoaAZoCWgPQwiCVfXyO69xQJSGlFKUaBVL22gWR0DIf75zV+ZxdX2UKGgGaAloD0MI3KD2WzthbkCUhpRSlGgVS9poFkdAyH/Ibc45tHV9lChoBmgJaA9DCPUTzm7tGXRAlIaUUpRoFUvEaBZHQMh/zi1qnFZ1ZS4="
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 620,
|
79 |
+
"n_steps": 1024,
|
80 |
+
"gamma": 0.999,
|
81 |
+
"gae_lambda": 0.98,
|
82 |
+
"ent_coef": 0.01,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 10,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3216dbb5779f15a20030e6457e294e33c5114b04b11fbd168d6dd69ccd71316a
|
3 |
+
size 87929
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2fcfb49f8e0eb09d201e6f20a5004432bfd080083abe27c6acc33081fe83b9e0
|
3 |
+
size 43201
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022
|
2 |
+
Python: 3.8.16
|
3 |
+
Stable-Baselines3: 1.6.2
|
4 |
+
PyTorch: 1.13.0+cu116
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
Binary file (230 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 276.3411794352555, "std_reward": 22.69282910743944, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-12-16T12:55:50.185313"}
|