--- license: apache-2.0 base_model: qanastek/whisper-base-french-cased tags: - whisper-event - generated_from_trainer datasets: - google/fleurs metrics: - wer model-index: - name: Whisper Base French results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: google/fleurs fr_fr type: google/fleurs config: fr_fr split: test args: fr_fr metrics: - name: Wer type: wer value: 23.795498749652683 --- # Whisper Base French This model is a fine-tuned version of [qanastek/whisper-base-french-cased](https://huggingface.co/qanastek/whisper-base-french-cased) on the google/fleurs fr_fr dataset. It achieves the following results on the evaluation set: - Loss: 0.5402 - Wer: 23.7955 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-07 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 5000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:-------:| | 0.3835 | 105.26 | 1000 | 0.5892 | 25.4237 | | 0.2837 | 210.53 | 2000 | 0.5526 | 23.8955 | | 0.2323 | 315.79 | 3000 | 0.5432 | 24.0122 | | 0.1961 | 421.05 | 4000 | 0.5402 | 23.7955 | | 0.1863 | 526.32 | 5000 | 0.5395 | 23.7955 | ### Framework versions - Transformers 4.37.0.dev0 - Pytorch 2.1.2+cu121 - Datasets 2.16.2.dev0 - Tokenizers 0.15.0