File size: 2,597 Bytes
2df2be1 f0bf58a 2df2be1 f0bf58a 2df2be1 f0bf58a 2df2be1 f0bf58a 2df2be1 f0bf58a 2df2be1 f0bf58a 2df2be1 f0bf58a 2df2be1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 |
---
language:
- tr
license: apache-2.0
base_model: alikanakar/whisper-synthesized-turkish-8-hour
tags:
- whisper-event
- generated_from_trainer
datasets:
- mozilla-foundation/common_voice_16_0
metrics:
- wer
model-index:
- name: Whisper Small Turkish Derived
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: mozilla-foundation/common_voice_16_0 tr
type: mozilla-foundation/common_voice_16_0
config: tr
split: test
args: tr
metrics:
- name: Wer
type: wer
value: 18.625004393518683
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Whisper Small Turkish Derived
This model is a fine-tuned version of [alikanakar/whisper-synthesized-turkish-8-hour](https://huggingface.co/alikanakar/whisper-synthesized-turkish-8-hour) on the mozilla-foundation/common_voice_16_0 tr dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2859
- Wer: 18.6250
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-07
- train_batch_size: 16
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- training_steps: 2000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:-------:|
| 0.3197 | 0.58 | 200 | 0.3517 | 21.5757 |
| 0.2672 | 1.16 | 400 | 0.3203 | 20.6724 |
| 0.2532 | 1.75 | 600 | 0.3065 | 19.6496 |
| 0.2382 | 2.33 | 800 | 0.2991 | 19.3420 |
| 0.2448 | 2.91 | 1000 | 0.2943 | 19.1276 |
| 0.2197 | 3.49 | 1200 | 0.2909 | 18.9712 |
| 0.2159 | 4.07 | 1400 | 0.2885 | 18.7340 |
| 0.2212 | 4.65 | 1600 | 0.2871 | 18.6988 |
| 0.2114 | 5.24 | 1800 | 0.2861 | 18.6320 |
| 0.2092 | 5.82 | 2000 | 0.2859 | 18.6250 |
### Framework versions
- Transformers 4.37.0.dev0
- Pytorch 2.1.2+cu121
- Datasets 2.16.2.dev0
- Tokenizers 0.15.0
|