File size: 6,155 Bytes
d727a17
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
import sys
import json
import torch
from peft import PeftModel
from transformers import GenerationConfig, LlamaForCausalLM, LlamaTokenizer, AutoModelForCausalLM, AutoTokenizer
from .handler import DataHandler

assert torch.cuda.is_available(), "No cuda device detected"


class Inferer:
    """
    A basic inference class for accessing medAlpaca models programmatically.

    This class provides methods for loading supported medAlpaca models, tokenizing inputs,
    and generating outputs based on the specified model and configurations.

    Attributes:
        available_models (dict): A dictionary containing the supported models and their configurations.

    Args:
        model_name (str): The name of the medAlpaca model to use for inference.
        prompt_template (str): The path to the JSON file containing the prompt template.
        base_model (str, optional): If LoRA is used, this should point to the bases model weigts
        model_max_length: (int, optional): Number of input tokens to the model. Default is 512.
        load_in_8bit (bool, optional): Wether a quantized model should be loaded. Default is False
        torch_dtype (torch.dtype, optional): The torch datatype to load the base model. Default is float16
        peft (bool, optional): If the model was trainied in 8bit or with LoRA, PEFT library should be used
            to load the model. Default is False. 

    Example:

        medalpaca = medAlapaca("medalpaca/medalapca-7b", "prompts/alpaca.json")
        response = medalpaca(input="What is Amoxicillin?")
    """
        
    def __init__(
        self, 
        model_name: str, 
        prompt_template: str,
        base_model: str = None,
        model_max_length: int = 512,
        load_in_8bit: bool = False, 
        torch_dtype: torch.dtype = torch.float16, 
        peft: bool = False
    ) -> None:
        
        if base_model and not peft: 
            raise ValueError(
                "You have specified a base model, but `peft` is false", 
                "This would load the base model only"
            )
            
        self.model = self._load_model(
            model_name = model_name, 
            base_model = base_model or model_name, 
            load_in_8bit = load_in_8bit, 
            torch_dtype = torch_dtype, 
            peft = peft
        )
        
        tokenizer = self._load_tokenizer(base_model or model_name)
                
        self.data_handler = DataHandler(
            tokenizer,
            prompt_template = prompt_template, 
            model_max_length = model_max_length,
            train_on_inputs = False,
        )
        
   
    def _load_model(
        self, 
        model_name: str, 
        base_model: str, 
        load_in_8bit: bool, 
        torch_dtype: torch.dtype, 
        peft: bool
    ) -> torch.nn.Module:

        if "llama" in base_model.lower(): 
            load_model = LlamaForCausalLM
        else: 
            load_model = AutoModelForCausalLM
            
        model = load_model.from_pretrained(
            base_model,
            load_in_8bit=load_in_8bit,
            torch_dtype=torch_dtype,
            device_map={"": 0},
        )

        if peft:
            model = PeftModel.from_pretrained(
                model,
                model_id=model_name,
                torch_dtype=torch_dtype,
                device_map={"": 0},
            )
        
        if not load_in_8bit:
            model.half()
            
        model.eval()

        if torch.__version__ >= "2" and sys.platform != "win32":
            model = torch.compile(model)

        return model
    
    def _load_tokenizer(self, model_name: str): 
        if "llama" in model_name.lower():
            tokenizer = LlamaTokenizer.from_pretrained(model_name)
        else:
            tokenizer = AutoTokenizer.from_pretrained(model_name)
        tokenizer.pad_token_id = 0
        tokenizer.padding_side = "left"    
        return tokenizer
        
    def __call__(
        self,
        input: str,
        instruction: str = None,
        output: str = None,
        max_new_tokens: int = 128,
        verbose: bool = False,
        **generation_kwargs,
    ) -> str:
        """
        Generate a response from the medAlpaca model using the given input and instruction.

        Args:
            input (str):
                The input text to provide to the model.
            instruction (str, optional):
                An optional instruction to guide the model's response.
            output (str, optional): 
                Prepended to the models output, e.g. for 1-shot prompting
            max_new_tokens (int, optional): 
                How many new tokens the model can generate
            verbose (bool, optional): 
                If True, print the prompt before generating a response.
            **generation_kwargs:
                Keyword arguments to passed to the `GenerationConfig`.
                See here for possible arguments: https://huggingface.co/docs/transformers/v4.20.1/en/main_classes/text_generation

        Returns:
            str: The generated response from the medAlpaca model.
        """

        prompt = self.data_handler.generate_prompt(instruction = instruction, input = input, output = output)
        if verbose:
            print(prompt)
            
        input_tokens = self.data_handler.tokenizer(prompt, return_tensors="pt")
        input_token_ids = input_tokens["input_ids"].to("cuda")

        generation_config = GenerationConfig(**generation_kwargs)

        with torch.no_grad():
            generation_output = self.model.generate(
                input_ids=input_token_ids,
                generation_config=generation_config,
                return_dict_in_generate=True,
                output_scores=True,
                max_new_tokens=max_new_tokens,
            )
        generation_output_decoded = self.data_handler.tokenizer.decode(generation_output.sequences[0])
        split = f'{self.data_handler.prompt_template["output"]}{output or ""}'
        response = generation_output_decoded.split(split)[-1].strip()
        return response