--- language: - zh base_model: - JacobLinCool/whisper-large-v3-turbo-common_voice_19_0-zh-TW pipeline_tag: automatic-speech-recognition tags: - audio - automatic-speech-recognition library_name: ctranslate2 --- # asadfgglie/faster-whisper-large-v3-zh-TW 此模型是將[JacobLinCool/whisper-large-v3-turbo-common_voice_19_0-zh-TW](https://huggingface.co/JacobLinCool/whisper-large-v3-turbo-common_voice_19_0-zh-TW) 轉換成`CTranslate2`格式的模型,可以在[faster-whisper](https://github.com/systran/faster-whisper)中使用。 ## Example ```python from faster_whisper import WhisperModel model = WhisperModel("asadfgglie/faster-whisper-large-v3-zh-TW") segments, info = model.transcribe("audio.mp3") for segment in segments: print("[%.2fs -> %.2fs] %s" % (segment.start, segment.end, segment.text)) ``` ## Conversion details 原始模型是根據以下指令轉換: ``` ct2-transformers-converter --output_dir faster-whisper-large-v3-zh-TW \ --model JacobLinCool/whisper-large-v3-turbo-common_voice_19_0-zh-TW \ --copy_files preprocessor_config.json ``` 在轉換完成後,請記得自行到原始模型的[model card](https://huggingface.co/openai/whisper-large-v3)中下載`tokenizer.json`。 (因為`JacobLinCool/whisper-large-v3-turbo-common_voice_19_0-zh-TW`的repo中沒有,而`faster_whishper`又需要這個酷東東來做tokenizer) 如果有需要,你可以在轉換指令中添加`--quantization float16`來指定量化精度。不過在推理時你依舊可以使用[`compute_type`](https://opennmt.net/CTranslate2/quantization.html)參數來進一步量化/去除量化。